Google Scholar



Redefining the catalytic HECT domain boundaries for the HECT E3 ubiquitin ligase family
Kane, E.I., Beasley, S.A., Schafer, J.M., Bohl, J.E., Lee, Y-S, Rich, K.J., Bosia, E.F., and Spratt, D.E. (2022) Biosci. Rep., 42, BSR20221036.
This article was selected for the cover of the October 2022 edition of Biosci. Rep.

Small molecule gankyrin inhibition as a therapeutic strategy for breast and lung cancer
Kanabar, D., Goyal, M., Kane, E.I., Chavan, T., Kabir, A., Wang, X., Shukla, S., Almasri, J., Goswami, S., Osman, G., Kokolis, M., Spratt, D.E., Gupta, V., and Muth, A. (2022)  J. Med. Chem, 65, 8975-8997.

Exchange broadening underlies the enhancement of IDE-dependent degradation of insulin by anionic membranes
Zheng, Q., Lee, B., Kebede, M.T., Ivancic, V.A., Kemeh, M.M., Lemos Brito, H., Spratt, D.E., and Lazo, N.D. (2022)  ACS Omega, 7, 24757-24765.


Intersection of redox chemistry and ubiquitylation: modifications required for maintaining cellular homeostasis and neuroprotection
Kane, E.I., Waters, K.L., and Spratt, D.E. (2021) Cells, 10, 2121.

Differential effects of polyphenols on insulin proteolysis by the insulin-degrading enzyme
Zheng, Q., Kebede, M.T., Lee, B., Krasinski, C.A., Islam, S., Wurfl, L.A., Kemeh, M.M., Ivancic, V.A., Jakobsche, C.E., Spratt, D.E., and Lazo, N.D. (2021) Antioxidants, 10, 1342.

HERC5 and the ISGylation pathway: critical modulators of the antiviral immune response
Mathieu, N.A., Paparisto, E., Barr, S.D., and Spratt, D.E. (2021) Viruses, 13, 1102.

Exploring the role of HERC2 and NEDD4L HECT E3 ubiquitin ligases in p53 signaling and the DNA damage response
Mathieu, N.A., Levin, R.H., and Spratt, D.E. (2021) Frontiers in Oncology, 11, 659049.

Structural insights into ankyrin repeat-containing proteins and their influence in ubiquitylation
Kane, E.I., and Spratt, D.E. (2021) Int. J. Mol. Sci., 22, 609.


An Angelman syndrome substitution in the HECT E3 ubiquitin ligase C-terminal lobe of E6AP affects protein stability and activity
Beasley, S.A., Kellum, C.E., Orlomoski, R.J., Idrizi, F., and Spratt, D.E. (2020) PLoS ONE .

HECT E3 Ubiquitin Ligases: biological roles, identified interactions, and relevance to disease.
Wang, Y., Argiles Castillo, D., Kane, E.I., žZhou, A., and Spratt, D.E. (2020, invited review) J. Cell Sci. .

New discoveries on the roles of ‘other’ HECT E3 ubiquitin ligases in disease development.  Kane, E.I. and Spratt, D.E. (2020, invited chapter) Ubiquitin – Proteasome Pathway, ISBN: 978-1-83880-841-9, 10.5772/intechopen.91770.

Crystal structure of the catalytic C-lobe of the HECT-type ubiquitin ligase E6AP.
Ries, L.K., žLiess, AKL, žFeiler, C., žSpratt, D.E., žLowe, E., and žLorenz, S. (2020) Protein Sci., 29, 1550-1554.


Rapid and efficient purification of homeodomain transcription factors for biophysical characterization.
Orlomoski, R., Bogle, A., Loss, J., Simons, R., žDresch, J.M., žDrewell, R.A., and Spratt, D.E. (2019) Protein Exp. Purif. 158, 9-14.

1H, 13C, and 15N resonance assignments of the C-terminal lobe of the human HECT E3 ubiquitin ligase ITCH.
Beasley, S.A., Bardhi, R. and Spratt, D.E. (2019) Biomol. NMR Assign. 13, 15-20.

A subset of calcium-binding S100 proteins show preferential heterodimerization.
Spratt, D.E., Barber, K.R., Marlatt, N.M., Ngo, V., Macklin, J.A., Xiao, Y., Konermann, L., Duennwald, M.L., and Shaw, G.S. (2019)  FEBS Journal 286, 1859-1876.


Resveratrol sustains insulin-degrading enzyme activity toward Aβ42.
Krasinski, C.A., Ivancic, V., Zheng, Q., žSpratt, D.E., and Lazo, N.D. (2018) ACS Omega 3, 13275-13282.

Enzyme kinetics from circular dichroism of insulin reveals mechanistic insights into the regulation of insulin-degrading enzyme.
Ivancic, V., Krasinski, C.A., Zheng, Q., Merservier, R.J., žSpratt, D.E., and Lazo, N.D. (2018) Bioscience Reports 38, BSR20181416.

The longest amyloid-β precursor protein intracellular domain produced with Aβ42 forms β-sheet-containing monomers that self-assemble and are proteolyzed by insulin-degrading enzyme.
Krasinski, C.A., Zheng, Q., Ivancic, V., žSpratt, D.E., and Lazo, N.D. (2018) ACS Chemical Neuroscience 9, 2892-2897.


RBR E3 Ubiquitin Ligases.
Beasley, S.A., Wang, Y. and Spratt, D.E. (2017) Encyclopedia of Signaling Molecules 2nd Ed.


Generation of phospho-ubiquitin variants by orthogonal translation reveals codon skipping.
George, S., Aguirre, J.D., Spratt, D.E., Bi, Y., Jeffery, M., Shaw, G.S., and O’Donoghue, P. (2016) FEBS Lett. 590, 1530-1542.

Suramin inhibits cullin-RING E3 ubiquitin ligases.
Wu, K., Chong, R.A., Yu, Q., Bai, J., Spratt, D.E., Ching, K., Lee, C., Miao, H., Tappin, I., Hurwitz, J., Zheng, N., Shaw, G.S., Sun, Y., Felsenfeld, D.P., Sanchez, R., Zheng, J.N., and Pan, Z.-Q. (2016) Proc. Natl. Acad. Sci. U.S.A. 113, E2011-2018.


Disruption of the autoinhibited state primes the E3 ligase parkin for activation and catalysis.
Kumar, A., Aguirre, J.D., Condos, T.E.C., Martinez-Torres, R.J., Chaugule, V.K., Toth, R., Sundaramoorthy, R., Mercier, P., Knebel, A., Spratt, D.E., Barber, K.R., Shaw, G.S., and Walden, H. (2015) EMBO J. 34, 2506-2521.


RBR E3 ubiquitin ligases: new structures, new insights, new questions.
Spratt, D.E., Walden, H., and Shaw, G.S. (2014, invited review) Biochem. J. 458, 421-437.

Pivotal role for the ubiquitin Y59-E51 loop in lysine-48 polyubiquitination.
Chong, R.A., Wu, K., Spratt, D.E., Yang, Y., Lee, C., Nayak, J., Xu, M., Elkholi, R., Li, J., Brown, B.D., Chipuk, J.E., Chen, Z., Sanchez, R., Shaw, G.S., Huang, L., and Pan, Z.-Q. (2014) Proc. Natl. Acad. Sci. U.S.A. 111, 8434-8439.

A snapshot at ubiquitin chain elongation: Lysine 48-tetra-ubiquitin slows down ubiquitination.
Kovacev, J., Wu, K., Spratt, D.E., Chong, R.A., Nayak, J., Shaw, G.S., and Pan, Z.-Q. (2014) J. Biol. Chem. 289, 7068-7081.


A molecular explanation for the recessive nature of parkin-linked Parkinson’s disease.
Spratt, D.E., Martinez-Torres, R.J., Noh, Y.J., Mercier, P., Manczyk, N., Barber, K.R., Aguirre, J.D., Burchell, L., Purkiss, A., Walden, H., and Shaw, G.S. (2013) Nat. Commun. 4, 1983. 
***Highlighted on the Michael J. Fox Foundation for Parkinson’s Research Website (August 1, 2013).

Structure of the HHARI catalytic domain shows glimpses of a HECT E3 ligase.
Spratt, D.E., Mercier, P., and Shaw, G.S. (2013) PLoS ONE 8, e74047.


Selective recruitment of an E2~ubiquitin complex by an E3 ubiquitin ligase.
Spratt, D.E., Wu, K., Kovacev, J., Pan, Z.-Q., and Shaw, G.S. (2012) J. Biol. Chem. 287, 17374-17385.

Structure and dynamics of calmodulin (CaM) bound to nitric oxide synthase peptides: effects of a phosphomimetic calmodulin mutation.
Piazza, M., Futrega, K., Spratt, D.E., Dieckmann, T., and Guillemette, J.G. (2012) Biochemistry 51, 3651-3661.


Association of the disordered C-terminus of CDC34 with a catalytically-bound ubiquitin. 
Spratt, D.E., and Shaw, G.S. (2011) J. Mol. Biol. 407, 425-438.

Expression and purification of an isotopically labeled aggregation-prone iNOS CaM binding protein for use in NMR studies.
Piazza, M., Duangkham, Y., Spratt, D.E., Dieckmann, T., and Guillemette, J.G. (2011) J. Label. Compd. Radiopharm. 54, 657-663.

Mapping the binding and calmodulin-dependent activation of nitric oxide synthase isozymes.
Spratt, D.E., Duangkham, Y., Taiakina, V., and Guillemette, J.G. (2011) The Open Nitric Oxide Journal 3, 16-24.


Codon optimization for enhanced Escherichia coli expression of human S100A11 and S100A1 proteins.
Marlatt, N.M., Spratt, D.E., and Shaw, G.S. (2010) Protein Expr. Purif. 73, 58-64.


Intraprotein electron transfer in inducible nitric oxide synthase holoenzyme.
Feng, C., Dupont, A.L., Nahm, N.J., Spratt, D.E., Weinberg, J.B., Guillemette, J.G., Salerno, J.C., Tollin, G., and Ghosh, D.K. (2009) J. Biol. Inorg. Chem. 14, 133-142.


FRET conformational analysis of calmodulin binding to nitric oxide synthase peptides and enzymes.
Spratt, D.E., Taiakina, V., Palmer, M., and Guillemette, J.G. (2008) Biochemistry 47, 12006-12017.

Regulation of mammalian nitric oxide synthases by electrostatic interactions in the linker region of calmodulin.
Spratt, D.E., Israel, O., Taiakina, V., and Guillemette, J.G. (2008) Biochim. Biophys. Acta. 1784, 2065-2070.


Calcium-deficient calmodulin binding and activation of neuronal and inducible nitric oxide synthases.
Spratt, D.E., Taiakina, V., and Guillemette, J.G. (2007) Biochim. Biophys. Acta. 1774, 1351-1358.

Differential binding of calmodulin domains to constitutive and inducible nitric oxide synthase enzymes.
Spratt, D.E., Taiakina, V., Palmer, M., and Guillemette, J.G. (2007)Biochemistry 46, 8288-8300.


Binding and activation of nitric oxide synthase isozymes by calmodulin EF hand pairs. Spratt, D.E., Newman, E., Mosher, J., Ghosh, D.K., Salerno, J.C., and Guillemette, J.G. FEBS J. 273, 1759-1771.

Selective labeling of selenomethionine residues in proteins with a fluorescent derivative of benzyl bromide.
Lang, S., Spratt, D.E., Guillemette, J.G., and Palmer, M. (2006) Anal. Biochem. 359, 253-258.


Dual-targeted labeling of proteins using cysteine and selenomethionine residues.
Lang, S., Spratt, D.E., Guillemette, J.G., and Palmer, M. (2005) Anal. Biochem. 342, 271-279.


Differential activation of nitric-oxide synthase isozymes by calmodulin-troponin C chimeras.
Newman, E., Spratt, D.E., Mosher, J., Cheyne, B., Montgomery, H.J., Wilson, D.L., Weinburg, J.B., Smith, S.M.E., Salerno, J.C., Ghosh, D.K., and Guillemette, J.G. (2004) J. Biol. Chem. 279, 33547-33557.

Comments are closed.