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Abstract

We present an experiment on the morphology and dynamics of a crack front propagating at the
interface between an elastomer and a glass slide patterned with a prescribed distribution of defects.
Regimes of high and low pinning strength are explored by changing the fracture energy contrast
of the defects. We first analyze the roughness of crack fronts by measuring their typical amplitude
in real and Fourier space. Irrespective of the pinning regime, no well defined self-affine behavior is
found which may be explained by the emergence of an intermediate lengthscale between the defect
size and the sample size. Then, we show that the dynamics at high fracture energy contrast results
in rapid jumps alternating with periods of arrest. The distributions of speeds, displacements and
waiting times are found to have an exponential decay which is directly related to the distribution
of distances between defects along the direction of propagation.
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1. Introduction

Due to progress in micro fabrication, microstructure of materials can be tailored to achieve
unprecedented macroscopic properties such as negative Poisson ratio [1], superhydrophobicity and
omniphobicity [2], reversible and strong adhesion [3, 4, 5] and anti-biofouling property [6]. Re-
garding the mechanical properties, the addition of particles is well known to enhance mechanical
properties, like in adobe, particles-loaded rubber [7], or nanosheets made of clay-reinforced compos-
ites [8]. Although remarkable achievements have been made over the past decade, it is still poorly
understood how large-scale mechanical properties are linked to characteristics of the microstruc-
ture such as size and distribution of heterogeneities, or strength of bonding of heterogeneities
and surrounding matrix. This link is crucial to predict and optimize the mechanical stability of
multilayered composite materials or, in the context of safety, the service lifetime of engineering
structures.

∗Corresponding author
Email address: jchopin@clarku.edu (J. Chopin)

Preprint submitted to Journal of the Mechanics and Physics of Solids October 7, 2014



Fractography is one of the most useful tools to determine the cause and dynamics of failure
of a material. It relies on a visual inspection of the postmortem cracked surfaces [9]. Some
morphological features are specific to modes of failure such as periodic strips in fatigue crack
[10] or facets for brittle crack [11]. A morphological feature found in heterogeneous material is
the fractal (or self-affine) geometry of broken surfaces. Since the seminal work by Mandelbrot
et al. [12], numerous experimental characterizations with a wide range of materials and fracture
protocols have been carried out to check the scale invariance and to measure associated roughness
exponents [13, 14, 15, 16, 17]. This specific morphology has been interpreted as the result of a
critical dynamics during the crack propagation through the heterogeneous material [18, 19, 20].

To the best of our knowledge only one experimental setup developed by Schmittbuhl and Måløy
enables testing this interpretation by the direct visualization of the crack front dynamics [21]. In
this setup, a crack front propagates at the interface of two sintered Plexiglas plates. Before sin-
tering, the plates are sandblasted to induce a disorder with a typical size given by the diameter of
projected beads. Using a subtle statistical analysis, they obtained information on the shape and the
dynamics of the crack front [22, 23]. For scales larger that the typical size of heterogeneities, they
found that crack propagation is well described by models first introduced by Gao and Rice [24],
and improved later on [25]. Critical exponents characterizing the morphology (roughness expo-
nent) and dynamics (scale-free avalanches) are found to agree with theoretical predictions[19, 20].
However, at smaller scale, the crack propagation is explained by another scenario based on growth
by coalescence of microcracks which accounts for the unexpectedly high roughness exponent at
that scale (∼ 0.6). While the interpretation of their experimental results brings a coherent picture
of the crack front dynamics in their setup, some aspects need to be clarified. First, there is no
clear experimental evidence of a diffuse front moving by microcracks coalescence at small scale.
Second, the lengthscale separating the roughness regime is located in the middle of the observation
window and, thus, prevents a clear identification of both roughness regimes over a large range of
lengthscales. Therefore, a better understanding of the rupture process at the microstructure scale
and a better control of the disorder are needed. Along these lines, other setups have been devel-
oped to enable a better control of deterministic heterogeneities using lithographic techniques [26] or
micro-machined interfaces [27], and experimental results were often in quantitative agreement with
models developed within the framework of Linear Elastic Fracture Mechanics (LEFM). However,
the case of a completely disordered interface has not been considered yet with these approaches.

In this paper, we present an original experimental setup where the shape and dynamics of
a crack front are analyzed while propagating through an interface patterned with a prescribed
random distribution of defects. We address the influence of the distribution of defects on the front
shape and dynamics. Our experimental results will be interpreted in the framework of LEFM
for which dissipative processes are assumed to be localized in a small region around the crack tip
(the process zone) and are traditionally characterized by a fracture energy Γ. The crack front will
propagate if the loading is high enough to overcome the energetic cost to create a new interface
which happens when G > Γ, where G is the elastic energy release rate, i.e. the elastic energy
released during fracture per unit of newly created fracture surface area. Consequently, the crack
is at equilibrium when G = Γ. When a material is heterogeneous because of, for example, voids or
inclusions, the fracture energy presents spatial fluctuations that are responsible for the distortion
of crack front shape. For moderate fracture energy contrast, the crack front is slightly distorted
at the defect scale and is then amenable to perturbative approaches [24]. In this regime, the
crack front can be understood as an elastic line with a nonlocal elasticity forced by a quenched
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noise (see [28] for a review). It was found that at small scale, the crack front presents smooth
deformations and continuous dynamics. Above a crossover which depends on the system size and
on the characteristics of the disorder, numerical and theoretical results show that the crack front
shape has scale invariant properties with self-affine behavior [29, 30, 31]. Moreover, the crack
propagates intermittently through avalanches which consist of rapid events where a part of the
front moves from one pinned configuration to another. This regime at large scale has been studied
intensively but no clear agreement of the predicted roughness exponent with experimental data has
been obtained so far [21, 22, 23]. Many reasons have been proposed to explain this disagreement:
the influence of nonlinear terms in the elastic energy release rate [32], finite size effects [33, 34, 35],
artifacts in the analysis of experimental data [36, 37], or more fundamentally the questioning of
the validity of LEFM approach [38].

The paper is organized as follows. In Section 2, we describe the experimental setup, the
fabrication of the sample using lithographic techniques, the method of visualization and extraction
of the crack front shape over time. Two regimes of pinning strengths are explored by changing
the fracture energy contrast from a high to a low value. In Section 3, we analyze the roughness of
the crack front shape using statistical tools. In either regimes, the fluctuations do not show scale
invariant behavior over significant ranges of lengthscales. This result is explained by the emergence
of an intermediate lengthscale which is the geometrical mean of the defect size and the size of the
sample. This lengthscale is derived by calculating the shape of crack front pinned by a single
defect taking into account a finite crack length. In Section 4, we analyze the statistics of front
dynamics by calculating the distributions of speed and displacement in both regimes. For high
fracture energy contrast, we find that the crack dynamics is slaved to the distribution of defects
through the distance between pinning points.

2. Experimental setup

In this experiment, a silicon elastomer in contact with a glass substrate is peeled using the
configuration of a beam cantilever. The elastomer is a crosslinked polydimethylsiloxane (PDMS,
Sylgard184, Dow Corning) of Young’s modulus E ≃ 2MPa prepared following a standard proto-
col [26]. The samples are 10mm thick, 76mm long and 22mm large, the two latter dimensions
being imposed by the use of microscope slides (dimensions 25×76 mm) as a substrate. The glass
slides are clamped on an aluminum frame. A deflection d of the elastomer beam is imposed using
two cylinders rigidly attached to a piezo-electric translation stage (NanoPZ, Newport) (Fig. 1). An
additional cylinder is glued to the elastomer using PDMS, thus providing two cross-cylinder con-
tacts with no tension induced and minimal friction. The crack front corresponds to the boundary
between bonded and debonded regions (Fig. 1(a))

Pictures are taken using a digital camera (Nikon, D300) mounted on a binocular (MZ16, Leica)
which is equipped with a LED ring for illumination. The CCD sensor of the camera has 3872×2576
pixels, one pixel is 4µm. The illumination makes the front appear as a bright line and the defects as
lighter gray areas (Fig. 1(c) and (d)). When a picture of the front over a wider range of lengthscales
is needed, we use a macro objective (Nikon) so that one pixel has a side length of 15µm; the sample
is then lit using a beamsplitter and a backlight (Phlox, Stemmer Imaging) placed vertically on the
side, so that the front corresponds to a boundary between two gray levels. Pictures are taken
every 10s. By adjusting the deflection rate with the stepper motor, the mean speed of the crack
front vm is kept constant, of the order of 0.1µm/s. The crack front shape is determined using
a home-made algorithm detecting maximal contrasts, and yielding the front position h(x, t) at a
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Figure 1: Experimental setup. (a) Schematic side view. A silicon elastomer is peeled from a patterned glass
substrate by means of a translating stage imposing a deflection d. (b) Schematic top view. The substrate can be
made chemically heterogeneous. (c) and (d) Pictures of the front (bright line) using a binocular for a high (c) and
low (d) fracture energy contrast δΓ/Γ0. (e) Normalized cross correlation of the disorder with η = 35% showing a
short range correlation of 15µm which corresponds to the defect diameter. Inset : Definition of the parameters that
rule the distribution of defects (white disks of diameter 2a). Lm is the mean distance between defects and L∥ is the
mean distance between defects along the direction of crack propagation (y-axis).

subpixel resolution. The mean position of the front is defined as the spatial average of h along the
transverse direction x, h0(t) = ⟨h(x, t)⟩x.

The glass substrate can be made chemically heterogeneous enabling the spatial modulation of
the fracture energy Γ of the interface. Using standard soft lithography techniques [26], a nanometric
chromium layer is deposited in prescribed areas of the glass slide. PDMS adheres more strongly
to glass than to chromium. The glass plate is patterned by a random distribution of defects which
are disc-shaped areas of radius a devoid of a chromium coating (Fig. 1(b)). Defects of arbitrary
shape, size and spatial distribution can be printed with a minimal size of 20µm over an area of
20mm2 (Fig. 1(c) and (d)). The x and y coordinates of each disk are obtained using a random
number generator with a uniform distribution where overlap is allowed. The spatial distribution
of the discs is uncorrelated for distances larger than 2a (see Fig. 1(e)). The fracture energies of
homogeneous PDMS-glass ΓG and PDMS-chromium Γ0 are measured [26] and are found to be
ΓG ∼ 7J⋅m−2 and Γ0 ∼ 0.1J⋅m−2. An adhesive strip of width 200µm (devoid of chromium) is printed
before the disordered area which allows us a direct in situ estimation of δΓ

Γ0
by measuring the aspect

ratio of the crack front tip when sweeping the strip [26]. In Fig. 1(c-d), we show two examples
of crack fronts in a disordered interface. In Fig. 1(c), when peeling the PDMS block for the first
time, the crack front (bright line) can exhibit overhangs and even filaments due to a high fracture
energy contrast ( δΓ

Γ0
∼ 10 − 14) and move according to an intermittent dynamics. The fracture

energy contrast can be lowered to δΓ
Γ0
∼ 1 after subsequent cycles of bonding-peeling (Fig. 1(d)). In

the vicinity of the strip, models based on perturbative approach are not valid because the slope of
the crack front is large. However, it was shown that they remain valid far enough from the strip.
We found that the slope rapidly decays and reaches value below 1 at a distance 2a from the strip.
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The distribution of defects can be characterized using three parameters: the density η, the
mean distance between defects Lm and the mean distance L∥ between defects along the y-axis
(along the direction of the crack propagation, see Fig. 1(e), inset). The density of defects is defined
as the area covered by the defects over the area of the patterned surface. It is noteworthy that the
procedure of substrate patterning yields a Poisson distribution, P (l∥) = 1/L∥ exp (−l∥/L∥), for the
distance l∥ between defects along the y-axis. These parameters are given in Table 1, along with
the mean velocity of the front and an estimation of the fracture energy contrast.

Exp. η (%) 2a (µm) Lm (µm) L∥ (µm) vm (µm/s) δΓ
Γ0

1 20 18 44 58 0.15 10-14
2 35 15 26 55 0.30 10-14
3 35 18 44 58 0.14 1

Table 1: Characteristic parameters of the distribution of defects and working parameters for Exp.1, 2, and 3. The
defects are disks of radius a ∼ 10µm. η is the density, Lm ∼ a/√η the mean distance between defects, and L∥ ∼ a/η
the mean distance between defects along the direction of propagation. vm is the mean velocity of the front and δΓ/Γ0

the fracture energy contrast where δΓ = ΓG − Γ0, ΓG and Γ0 the glass and chromium fracture energy respectively.

3. Crack front morphology

In Fig. 2, we show a crack front from Exp.1 after image processing. The shape results from two
contributions: defect induced fluctuations at small scale and a parabolic-like trend at large scale
which is exaggerated by the scale difference in the x and y axes. This trend which is due to an
anticlastic effect can be estimated by a quadratic fit (dotted line in Fig. 1(a)). The typical radius
of curvature of the parabola (∼ 0.5m) is larger than all other lengthscales but affects dramatically
the statistical analysis of the profile. The whole front is corrected by subtracting the fitted shape
from the actual front and, to simplify notations, the profile is noted h(x, t). Figure 2(b) shows a
corrected crack front along with a magnified part of length ∆x illustrating that the fluctuations
can be observed over a wide range of lengthscales.

The amplitude of the corrected crack front are now analyzed using the Height-Height Corre-
lation (HHC) method and Power Spectrum analysis (PS). In the HHC method, the amplitude σ

of the fluctuations is evaluated within a band of width ∆x starting at x (see Fig. 2(b), inset) and
averaged over all possible origins x and all fronts (all values of time t):

σ(∆x) = √⟨(h(x +∆x, t) − h(x, t))2⟩
x,t

(1)

Figure 2(c) shows the evolution of σ with ∆x for Exp.1, 2 and 3. As expected, the amplitude
of the fluctuations increases when evaluating over increasing lengthscales. Lines corresponding
to roughness exponents ζ = 0.25 and 0.85 are shown as guides for the eyes. σ is observed to
have the same tendency for Exp.1 and 2 whereas for Exp.3, σ is smaller which reflects a smaller
fracture energy contrast. We emphasize that no well-defined roughness exponent is observed over
the observation window, instead the data show two crossovers lc and Lc (vertical lines). The
lengthscale lc is interpreted as a cutoff related to the defect size and is found to be 35µm for
Exp.1 and 2 and 100µm for Exp.3. When ∆x < lc, the roughness is 0.8 which is consistent with the
roughness of a smooth front with positive correlations (see Fig. 1(d)). When ∆x > Lc, the roughness
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Figure 2: Spatial analysis of crack fronts. (a) Crack front shape (solid red line) from Exp.1 obtained after image
processing. Note that the two axes have different scales. The large scale trend is estimated by a fit with a quadratic
polynomial (dashed line). (b) Corrected front after subtraction of the trend. Inset : Part of the front (green line) of
length ∆x starting at x showing fluctuations at smaller length scale. (c) Standard deviation of the corrected front as
a function of window length ∆x for Exp.1, 2, and 3 using the Heigth-Height correlation (HHC) method. Power laws
with exponent 0.85 (blue dashed line) and 0.25 (green dotted line) are shown. The small and large scale crossovers,
lc and Lc respectively, are shown. Inset : σ for Exp.1 calculated after using linear (dashed line), quadratic (solid
line) and cubic (dotted line) corrections. σ is largely overestimated at large scale when using a linear correction.
(d) Power spectrum of the corrected front as a function of λ. A Hanning window is also used to reduce spurious
contributions due to the finite length of the front. Power law with exponent 1.5 (green dotted line) is shown.
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is approaching zero which is what one would expect for a flat horizontal profile at large scale. For
small fracture energy contrast, lc is found to be larger which can be interpreted by the fact that
weaker defects would significantly distort the front at larger lengthscale therefore extending the
regime of high roughness exponent. However, Lc is found to remain roughly unchanged underlying
a different physical origin such as boundary effects.

To obtain further insight in the statistics of fluctuations, we measure the power spectrum (PS)
of corrected fronts which is estimated by calculating the periodogram S(λ) of h:

S(λ) = 1

2L
∣ 2L∑
x=1

h(x)e−i2πx/λ∣2 , λ = 2, 3, ..., L (2)

A Hanning window is also used to reduce spurious contributions due to the finite length of the
front. In Fig. 2(d), the PS for all experiments is plotted as a function of the wavelength λ. We
find that a regime of rapid increase of the amplitude of fluctuations for λ ∼ lc is followed by a
regime of slower evolution at larger λ. The transition between the two regimes lc depends on the
experiments and is less sharp when the fracture energy contrast is lowered. As a guide for the eyes,
power law of exponent 1.5 is shown which corresponds to a roughness exponent ζ = 0.25. Overall,
the fluctuations of the front increase with the fracture energy contrast δΓ/Γ0. Indeed, at larger
fracture energy contrast, the disorder induces more distortion to the crack front while the elastic
restoring force remains unchanged. The typical size for these fluctuations is aδΓ/Γ0 where a is
the defect characteristic size. Surprisingly enough, the transition from high to low fracture energy
contrast is not reflected by a qualitative change in roughness curves shown in Fig. 2.

Following [36], we verified that our statistical analysis is not biased due to discontinuities in the
signal, finite size effects or global trends. In particular, we checked that no change in the roughness
curves is observed when correcting the crack profile with polynomials of higher order as shown in
the inset of Fig. 2(c). However, the results from the two analyses (HHC and PS) do not provide
unambiguous results for the existence of self-affine profiles with well-defined roughness exponents.
This can be attributed to the existence of a crossover at approximately 1mm which is responsible
for an absence of self-affinity of the crack front. This crossover is rather surprising because it is
smaller than the system size (∼ 20mm) and larger than the defect size (∼ 0.02mm). This is in
contrast with the experiment of Schmittbuhl et al. [21] on a similar system where they found two
different roughness exponents for lengthscales smaller and larger than the typical size of disorder.
However, we note that in our experiment, the amplitude of fluctuations are always measured at
scales larger the defect size.

In the following, we argue for the existence of a new lengthscale that is intermediate between
defect size and sample size. The theoretical interpretation of crack front dynamics in disordered
materials has often been based on the formula that provides the first-order variation of the stress
intensity factor resulting from some small, but otherwise arbitrary coplanar perturbation of the
front of a semi-infinite crack in an infinite body [24]. To be applicable to experiments, this requires
that the characteristic distance of variation of this perturbation in the direction of the crack front
be small compared to all other dimensions of the problem. In [39], the variation of the local
mode I stress intensity factor for a cantilever crack that takes into account the cracked geometry
and boundary conditions used in experiments has been provided. In order to apply the latter
results to our experimental situation within a tractable model, several approximations should be
made. First, we neglect the effect of the mode mixing induced by the asymmetric beam cantilever
geometry of the experimental setup. Second, the dependence of the toughness with the local speed
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of the front is neglected because the crack front propagates at velocity vm ∼ 0.1µm/s smaller that
the characteristic velocity of dissipative processes c ∼ 20µm/s [26]. Third, we address the effect of
a single finite geometrical length scale, namely the situation of a planar crack of length h0 lying
on the mid-plane of a very thin plate. This is not the case of the present experimental situation,
where the thickness of the sample is finite and can also be a screening length for the crack front
fluctuations. However, this limit allows analytic results that illustrate the effect of finite geometry
of the sample on the crack front shape. We will discuss in the following the general validity of this
approximation when the thickness of the sample is taken into account.

We consider the situation of a sample in which a planar crack front is pinned by a single defect
consisting of an adhesive strip, the rest of the interface being homogeneous. The strip is then
modeled by a spatially modulated fracture energy

Γ(x) = Γ0 + δΓ(x) (3)

where δΓ(x) is a rectangular gate function of width 2a :

δΓ(x) = ⎧⎪⎪⎨⎪⎪⎩
δΓ if ∣x∣ < a,
0 if ∣x∣ > a, . (4)

with δΓ ≪ Γ0. When there is no adhesive strip, the crack length, the elastic energy release rate
and the fracture energy are noted h0, G0 and Γ0 respectively. The strip induces perturbations
δh(x) and δG[x, δh] of the front shape and the elastic energy release rate respectively. Under the
assumption of small slope ∣h′(x)∣≪ 1, δG[x, δh] is given by [39]

δG

G0

= 2PV ∫
+∞

−∞
f (x′ − x

h0
) δh(x′) − δh(x)(x′ − x)2

dx′

2π
(5)

where PV stands for the Principal Value of the integral and f(u) is a weight function. In the
Fourier space, Eq. (5) simplifies into

δ̃G(q)
G0

= 2F (qh0) δ̃h(q)
h0

(6)

with [39]

F (p) = 2p cosh(2p) − sinh(2p)
2p − sinh(2p) . (7)

Using the Griffith criterion one can relate the spatially modulated fracture energy to the crack
front shape through

δΓ(x)
Γ0

= δG(x)
G0

(8)

Here, the zeroth order solution Γ0 = G0 has been used. Using the expression (4) for the fracture
energy contrast, the expression of the front shape in the Fourier space is given by

δ̃h(q)
h0

= δΓ

Γ0

sin qa

qF (qh0) (9)

and in the real space the solution reads

δh(x)
h0

= 1

2π

δΓ

Γ0
∫
+∞

−∞

sin qa

qF (qh0)eiqxdq (10)

8



This integral does not admit an analytic expression. In order to look for the asymptotic behavior
of h(x) near defect and far from defect, it is useful to replace F (p) by an approximate form F0(p)
given by

F0(p) = −2√1 + p2 (11)

The function F0(p) displays the same asymptotic behavior as F (p), namely F0(0) = −2 and F0(p) ≈
−2∣p∣ for large p. Moreover, the ratio F (p)/F0(p) is always close to unity showing that F0(p) is a
good approximation for F (p) for all p. Substituting in Eq. 10, one obtains

δh′(x) = − δΓ

4πΓ0

[K0(∣x + a∣/h0) −K0(∣x − a∣/h0)] , (12)

whereK0 is the modified Bessel function of zeroth order. Near defect, recognizing that a ∼ ∣x∣≪ h0,
Eq. 12 gives

Neardefect ∶ δh′ND(x) ≈ δΓ

4πΓ0

log ∣1 + x/a
1 − x/a ∣ , (13)

yielding after integration the front shape given in [26]. Far from the defect (∣x∣ ≫ a), Eq. 12 gives

Far fromdefect ∶ δh′FD(x) ≈ δΓ

2πΓ0

(a/h0)K1(x/h0), (14)

where K1 is the modified Bessel function of first order. The transition between the front slope
near defect and far from defect occurs for a crossover lengthscale Lc. In order to estimate Lc, we
introduce

ǫ(x/a;h0/a) = ∣δh′ND

δh′
FD

− 1∣ , (15)

The function ǫ(x/a;h0/a) is expected to reach a minimum at the crossover length x = Lc when
the solution near and far from defect are of the same order of magnitude (δh′ND ∼ δh′FD). Indeed,
Fig. 3(a) shows that ǫ(x/a;h0/a) exhibits an absolute minimum which is found to increase with
h0/a. From a fit of the data (see Fig. 3(b)), we find that the crossover follows the scaling:

Lc

a
= A(h0

a
)α , (16)

with A = 0.89 and α = 0.45. Therefore the large scale crossover Lc is found to be much smaller
than any other macroscopic lengthscale. Indeed, recognizing that α ≈ 1/2, Lc is approximately
the geometric mean of a microscopic quantity (the defect size) and a macroscopic quantity (the
crack front length), thus, making any scale invariant regime difficult to probe experimentally. This
cutoff may have a significant influence on the interpretation of roughness analysis. Indeed, the self
affine properties of crack front relies exclusively on the logarithmic response from one defect or
equivalently to the nonlocal elasticity. The large scale cutoff provides a natural screening length for
the elastic interaction over which the amplitude of fluctuation starts to saturate. In our experiment,
Lc ∼ 0.6mm, which is in the same order of magnitude than the crossover estimated experimentally
and shown in Fig. 2(c) and (d). The analysis we developed illustrates how finite size effect reflects
on the front elasticity based on a simplified model. The existence of a cutoff at an intermediate
length scale is a robust result which persists when the full complexity of the system is taken into
account. The presence of mode mixing or the finite thickness of sample will certainly affect the
prefactor in Eq. 16 but it is unlikely that the exponent will be affected.
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Figure 3: (a) Ratio ǫ = ∣δh′ND/δh′FD − 1∣ as a function of x/a for h0/a = 10, 102, 103, 104. The crossover length Lc/a
is defined as the minimum of each curve. (b) The curve Lc/a as a function of h0/a is best fitted by A(h0/a)α where
α = 0.45 and A = 0.89.

Except for the intensity of the fracture energy contrast, the analysis of the crack front shapes
does not change qualitatively with the three different types of disorder used. We show in the follow-
ing that the statistics of the crack front dynamics reveals tight connections with the distributions
of defects.

4. Crack front dynamics

In Fig. 4(a), we show superimposed pictures of the crack front while propagating in a disordered
interface with a high fracture energy contrast. When a part of the crack front remains in the same
location from one picture to the next one, the corresponding area in the picture becomes darker.
Sharp and disconnected dark lines correspond to pinned positions (see blue arrows) and illustrate
an intermittent dynamics characterized by crack arrests alternating with jumps. More interestingly,
we can relate the pinned positions with the location of defects. In Fig. 4(b), the distributions of
the defects swept by the front are shown. We can see that pinned parts of the front are located in
regions of higher fracture energy (see red arrows).

We now turn to a quantitative approach and we consider the temporal evolution h(x0, t) of one
point of the crack front located at x = x0. In Fig. 4(c), h(x0, t) is plotted as a function of time for
Exp.1 (see Table 1). Note that the initial position is set to 0 and that the total duration of the
propagation is actually 10 times longer. The time series exhibit almost vertical lines corresponding
to jumps alternating with plateaus corresponding to arrest periods. This features seem to disappear
for Exp.3 where the motion appears smoother.

In a first statistical analysis, we measure the speed v(x0, t) = h(x0, t +∆t) − h(x0, t)
∆t

where ∆t

is the increment of time. In Fig. 4(d), we show the probability density function (pdf) of the speed
for large ∆t. The speed is observed to follow a Gaussian distribution with vm as a mean. When ∆t

is much smaller and equal to the acquisition frame rate (∆t =10s), the pdf is qualitatively different,
featuring a peak for v ≪ vm and an exponential tail for v ≫ vm. The peak corresponds to arrest
periods with a width given by the accuracy of speed measurements which is around ∼ 0.1µm/s. The
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Figure 4: Temporal analysis of crack fronts. (a) Superimposition of all pictures of the interface when the crack
front has propagated from bottom to top (Exp.1). The darker the region, the more time the front stopped (see red
arrows). The picture width is ∼1mm (b) Corresponding picture of the defects (grey areas). The blue arrows drawn
at the same locations as the red one roughly correspond to regions of high fracture energy. (c) Temporal evolution of
h(x0, t) which corresponds to the evolution of one point of the front located at x = x0 over time t for Exp.1 (thin red
line), Exp.2 (thick blue line), and Exp.3 (dashed magenta line). At high fracture energy contrast (Exp.1 and Exp.2),
fast jumps of size lj alternates with arrest periods of duration tw. (d) Lin-log plot of the probability distribution
function (pdf) of the speeds showing a peak at small velocity compared to the mean velocity vm and an exponential
tail for larger velocities. The speed is evaluated over a duration ∆ = 10s. (e) Linear-logarithmic plot of the pdf of
the velocities at longer time ∆ = 1500s. When ∆ is increased, the pdf converges to a Gaussian distribution with vm
as a mean.
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Figure 5: Analysis of displacements at high fracture energy contrast. (a) Temporal evolution of the displacement
h̄ = h−vmt relative to the mean front position for Exp.1. (b) Pdf of forward displacements h̄ > 0 relative to crack front
mean position for Exp.1 (●) and Exp.2 (◾). h̄ is measured for a duration ∆t = 30s. Large displacements correspond
to jumps which are distributed according to an exponential. Using a fit of the slope (dashed lines), characteristic
jump sizes are estimated to be Lj = 11µm for Exp.1 and 10µm for Exp.2.

large speeds correspond to jumps of the front from one area of high fracture energy to another. The
observation of an exponential tail is in clear contrast with previous experiments where an algebraic
decay of the pdf has been observed [40, 41]. In order to understand the origin of the exponential
behavior, we analyze the statistic of jumps and arrests periods. We focus on the case of strong
pinning where the dynamics is discontinuous or intermittent and for which the following analysis
is relevant.

We consider the displacements relative to the mean front position which are defined as h̄(x0, t) =
h(x0, t) − vm(x0)t where vm is obtained by a linear fit of h(x0, t). In Fig. 5(a), we plotted the
temporal evolution of h̄(x0, t) which shows steep ascending slopes corresponding to jumps of size lj
and weak descending slopes (about −vm) corresponding to arrest periods. We focus our attention
now on the statistics of jumps which coincide with the statistics of h̄ when v ≫ vm. In Fig. 5(b),
we show in a linear-logarithmic plot the pdf of the displacement for Exp.1 and 2. Jumps larger
than 50µm are also distributed exponentially, P (lj) ∼ exp(−lj/Lj). By an exponential fit of the
tail, we extract the characteristic length scale for the jumps Lj , which is found to be 11µm for
Exp.1 and 10µm for Exp.2 with only a weak dependence with the time interval ∆t. Although
vm is two times smaller for Exp.1 than for Exp.2, it does not affect significantly Lj. This is an
important qualitative result since a lengthscale is found in the local speed distribution unlike in
the experiment reported in [23] where scale invariant features have been found. It is expected that
this characteristic lengthscale Lj which is much smaller than the size of the specimen or even Lc is
expressed as a combination of the defect size a and the density of defects η which are the only two
parameters characterizing the statistics of the disorder. In the following, we argue that Lj scales
as L∥ ∼ a/η.

The origin of the exponential distribution of jumps with a characteristic length independent of
vm can be interpreted with the following argument. As shown in Fig. 4, the crack front is observed
to move rapidly from a defect to the following one, it is then expected that the distribution
of jumps follows the distribution of l∥, the distance between two successive defects along the
crack propagation. Therefore, the Poisson distribution of l∥ should account for the origin of the
exponential tail for the pdf of jumps. L∥ for Exp.1 and Exp.2 is however larger (∼ 50µm) than
Lj, which may be ascribed to the elasticity of the front that reduces jump sizes. At low fracture
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Figure 6: Analysis of waiting times in the high fracture energy contrast regime. (a) Waiting times as a function of
the y coordinate for Exp.1. The discretization is ∆y = 15µm. (b) Distribution of waiting times for Exp.1 (●) and
Exp.2 (◾) along with an exponential fit of the tail (dashed lines). Measured characteristic waiting times are Tw = 160s
for Exp.1 and 90s for Exp.2.

energy contrast (Exp.3), the distribution is qualitatively different from Exp.1 and Exp.2 exhibiting
no clear exponential nor algebraic decay (data not shown). In this case, although a regime of weak
pinning can be expected, associated scale invariant properties are not well defined. Conversely,
features of the high fracture energy contrast are local and, therefore, more easily probed. This
strong relationship between the distribution of jumps at short time and the distribution of l∥ was
made using a given, yet generic, type of disorder obtained by a random, uncorrelated, deposition
of disks. It will be of great interest to vary the disk diameter and, in a broader range, the density
of defects and examine the limit of validity of our results.

Now we consider the waiting time distribution. We measure the time spent by a front at the
position y within ∆y. Fig. 6 shows an example of the waiting time as a function of y and reflects
more accurately the speed distribution at speeds much smaller that vm since ∆y/tw is actually a
measure of the front velocity when pinned on defects. The wide distribution of time is revealed
more quantitatively by the distributions of waiting times presented in Fig. 6. The distribution
shows an exponential tail for large tw, P (tw) ∼ exp(−tw/Tw) where Tw is a characteristic waiting
time. We found that Tw =160s for Exp.1 and 90s for Exp.2 with only a weak dependence on the
choice of ∆y. Unlike the distribution of displacements, tw depends strongly on vm. To match the
imposed mean velocity, the jumps characteristic length and typical waiting times should be in such
proportion that on average vm ∼ Lj/Tw. We measure Lj/Tw = 0.07µm/s for Exp.1 and 0.1 µm/s
for Exp. 2. The agreement with the corresponding mean velocity is off by a factor of 3. However a
better agreement is obtained by considering their ratios which is 0.6 and agrees well with the ratio
of vm which is 0.58. Indeed, taking the ratio allows us to cancel out any non dimensional factors
in the relation between vm, Lj and Tw.

In the high fracture energy contrast regime, we found a clear relation between the microstructure
and the dynamics. The crack front dynamics is slaved by the distribution of disorder leading to
a kind of stick-slip motion with a well defined characteristic waiting time given by Tw ∼ L∥. This
scaling allows a direct control of the crack growth by tuning the characteristics of the disorder
keeping all other parameters such as the material properties constant. Indeed, we can speculate

13



that the dissipation is always significant even at vanishing vm and a more general loading force
because the motion happens by jumps much faster than the average speed, which leads to high
dissipation. This study can be compared with recent results showing that the fracture energy of
disordered material can be enhanced only in the high fracture energy contrast regime whereas no
obvious toughening mechanism was found for low fracture energy contrast [30].

5. Conclusion

We have presented an experimental setup enabling the study of the morphology and the dy-
namics of a crack front propagating in a disordered interface. Using lithographic techniques, we are
able to prescribe the shape and spatial distribution of defects and change the fracture energy con-
trast allowing us to explore the regimes of high and low fracture energy contrast. In both regimes,
the roughness analysis does not reveal any scale invariant properties nor well defined roughness
exponents. We identified an intermediate length scale that can be modeled easily considering a
single defect. We argue that finite size effects are responsible for an attenuation of fluctuations
at a scale much smaller than the system size. Indeed, the proposed cutoff is found to scale as
the geometrical mean between the crack length and the typical size of defects. This is agreement
with a recent set of studies showing the importance of finite size effects in related systems but in
different geometry and dimensionality [33, 42]. Our results show explicitly that the morphology of
the crack front only provides a limited access to the whole crack dynamics. In our experimental
setup, we have access to the instantaneous dynamics which allows to discriminate between high and
low fracture energy contrast and draw a clear connection with the characteristics of the disordered
pattern. In the high fracture energy contrast regime, we found that the statistics of jumps and
waiting time is directly related to the distribution of defects. This tight connection is however lost
in the low fracture energy contrast regime where the elastic interaction seems to average out the
detailed feature of the disorder. Future work should consist of tuning the geometrical properties
of disordered patterns and to determine their effects on the crack front statistics. Finally, we hope
that our results will trigger further numerical and theoretical studies considering situations closer
to experiments.
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[21] J. Schmittbuhl, K. J. Måløy, Direct observation of a self-affine crack propagation, Physical Review Letters

78 (20) (1997) 3888.
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