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We consider a thin elastic sheet adhering to a stiff substrate by means of the surface
tension of a thin liquid layer. Debonding is initiated by imposing a vertical displacement
at the centre of the sheet and leads to the formation of a delaminated region or ‘blister’.
This experiment reveals that the perimeter of the blister takes one of three different
forms depending on the vertical displacement imposed. As this displacement is increased,
we observe first circular, then undulating and finally triangular blisters. We obtain
theoretical predictions for the observed features of each of these three families of blisters.
The theory is built upon the Föppl–von Kármán equations for thin elastic plates and
accounts for the surface energy of the liquid. We find good quantitative agreement
between our theoretical predictions and experimental results, demonstrating that all
three families are governed by different balances between elastic and capillary forces.
Our results may bear on micrometric tapered devices and other systems, where elastic
and adhesive forces are in competition.

Keywords: adhesion; elastic plate theory; elastocapillarity; developable surfaces;
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1. Introduction

Adhesion is ubiquitous in a range of industrial applications and biological situations.
On the one hand, highly optimized adhesives are used to assemble components
or to repair broken objects. In electronics and in coating applications, an elastic
film often adheres to a substrate through molecular forces (see, for example, Xia
et al. 1999). On the other hand, geckos and insects use a combination of van der
Waals and capillary forces to adhere to substrates and walk upside down
(Autumn et al. 2002; Gorb 2005; Huber et al. 2005).

While industrial applications generally seek permanent bonding, life usually
requires reversible bonding. In both cases the strength of bonding is, therefore,
a quantity of considerable interest. The most common measure of the strength of
bonding is the work of adhesion Dg, i.e. the energy per unit area needed to
create two new interfaces when separating the two adhering objects. Many of
the experimental methods developed to measure the work of adhesion actually
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rely on some combination of adhesive and elastic forces. For example, in the
Johnson–Kendall–Roberts test (Johnson et al. 1971), the deformation of a soft
sphere is used to infer the value of Dg. Similarly, in the ‘peel test’, the work of
adhesion is determined from the force required to peel a bonded film from a rigid
substrate (Obreimoff 1930; Kendall 1975).

In addition to providing convenient techniques for measuring the work of
adhesion, the interaction of elastic and surface forces gives rise to a rich variety
of physical phenomena. In the peeling geometry, for example, fingering
instabilities have been observed for both viscous (McEwan & Taylor 1966)
and elastic (Ghatak et al. 2000; Adda-Bedia & Mahadevan 2006) substrates.
Collective effects appear in the capillary-induced adhesion of an ensemble of
flexible strips or rods (Bico et al. 2004; Kim & Mahadevan 2006; Py et al. 2007).
These phenomena belong to a broad class of problems involving both elasticity
and capillarity, which is referred to as ‘elastocapillarity’.

Here, we consider a thin sheet adhering to a stiff substrate. In this situation,
debonding can either be initiated from the periphery (as when peeling an
adhesive strip) or from a point beneath the sheet. Both of these methods have
commonly been used as a way of measuring the adhesive energy of polymer
coatings on rigid substrates. In the latter situation, a shaft penetrating the
substrate is used to push the sheet from below. This causes the formation of an
internal delamination blister and so is commonly referred to in the literature as
the blister test (Dannenberg 1961; Briscoe & Panesar 1991). While this is a
useful test for characterizing the properties of adhesives, it is distinct from the
delamination observed in many manufacturing processes, which is often driven
by pre-existing stresses within the substrate (Gioia & Ortiz 1997).

The experiment presented in this article is similar to the blister test except
that the adhesion is mediated by the surface tension of a liquid—hence this
experiment may be thought of as the ‘liquid blister test’. More precisely, an
elastic disc is bound to a substrate by a very thin liquid layer and quasi-statically
loaded from below by means of a central indentor. This experimental setting
allows us to go beyond the standard blister test and to unravel previously
unreported regimes where the blister is not axisymmetric. We find an instability
driven by orthoradial compression in an annulus, but the selection of the
wavelength is different from that found in other systems (Mora & Boudaoud
2006; Huang et al. 2007). The quasi-static nature of the experiment also
distinguishes this instability from the fingering observed when a fluid displaces a
more viscous liquid (Saffman & Taylor 1958). At very large displacements, we
find that the blister takes a triangular shape. The adhered part of the sheet then
forms a conical shape reminiscent of the developable cones observed in crumpled
paper (Ben Amar & Pomeau 1997; Cerda et al. 1999).

The paper is organized as follows. In §2, we detail the experimental set-up and
characterize experimentally the main regimes. These regimes are identified
by the shape of the blister edge (circular, undulating or triangular) and depend
on the displacement imposed by the indentor. In §3, we model the system as a
thin elastic plate adhering to a stiff substrate with a constant work of adhesion.
Using this model, we study the properties of the blisters in each of the three
regimes and compare the results with our experimental data. Finally, in §4, we
summarize our findings and discuss some of their implications.
Proc. R. Soc. A (2008)
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Figure 1. Experimental set-up. (a) Side view. A thin plastic sheet (see table 1 for properties) of
radius R� adheres to a glass plate (330!300 mm). The adhesion is mediated by a thin layer
of ethanol. A hole of 16 mm diameter is drilled in the middle of the plate for an indentor (cylinder
of 6.3 mm in diameter, capped by a hemisphere) that can produce displacements of up to 2 cm.
(b) Plan view. When moving the indentor upwards, a delamination blister is nucleated and a crack
front propagates (dashed curve).
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2. The experiment

(a ) Experimental set-up

The system (see figure 1) consists of a thin elastic sheet adhering to a rigid glass
plate (of dimensions 330!300 mm) by means of a thin liquid layer. The
experiments reported here were performed with ethanol (surface tension
gZ21 mN mK1), but we also used silicon oils with no noticeable effect on the
results. Ethanol was used for its ease of cleaning (compared with silicon oils) and
the insensitivity of its surface tension coefficient to contaminants (compared with
water). The plate had a hole of diameter 16 mm drilled in its centre, which allows
for the equilibration of air pressure between the two sides of the sheet. We use a
micrometric screw positioned beneath the hole as an indentor. Its cylindrical end is
capped with a hemisphere and has a diameter of 6.3 mm. The screw allows a
vertical positioning of the cap to within 1 mm over a 2 cm range. The hemispherical
cap of the indentor pushes the sheet causing debonding of the sheet and nucleation
of the blister. As in the delamination literature, we shall use the term ‘crack front’
to designate the frontier between the bonded and the debonded parts of the sheet.
Upon debonding, the sheet and the glass substrates remain wetted by the liquid, as
shown schematically in the inset of figure 1a. The work of adhesion, therefore,
corresponds to the energy required to create two air/ethanol interfaces of surface
tension g, and we have DgZ2g.

Typically the indentor is moved at a vertical speed of 100 mm sK1. Using
typical speeds in the region of 5 mm sK1 we see no observable differences.
Likewise, with silicon oils of viscosities different from that of ethanol we do not
see any observable difference. We therefore conclude that our system is
effectively quasi-static and restrict the present study to equilibrium states.

We used circular sheets made of three types of plastic material: low-density
polyethylene (LDPE); polypropylene (PP); and polyamide (PA), supplied
by Goodfellow. Their mechanical and geometrical properties are given in
Proc. R. Soc. A (2008)



Table 1. Properties of the sheets used: Young’s modulus E, Poisson ratio n, thickness h, bending
stiffness B and disc diameter 2R�. (LDPE, low-density polyethylene; PP, polypropylene; PA,
polyamide–nylon6. The values of E were averaged over two orthogonal directions as these
materials are anisotropic (anisotropy in the range 10–20%).)

material E (GPa) n h (mm) B (mJ) 2R� (mm)

LDPE 0.2 0.4 30; 100 0.50 120; 175; 275
PP (i) 2.1 0.4 40 13 120; 175; 275
PP (ii) 1.2 0.4 100 120 120; 175; 275
PA 2.7 0.4 200 2100 175
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table 1. Typically, the Young’s modulus E is of the order of 1 GPa, the Poisson
ratio nz0.4 and the thickness h is in the range 30–200 mm, resulting in a
bending stiffness

Bh
Eh3

12ð1Kn2Þ ; ð2:1Þ

in the range 0.5–2000 mJ. The diameter 2R� of the sheets was in the range
12–27.5 cm. The initial volume of ethanol used as adhesive was in the
range 20–1000 ml, depending on the radius of the disc. This corresponds to a liquid
layer thickness in the range 1–50 mm.We found that most results were insensitive to
the volume of ethanol, except in an intermediate regime that will be discussed
below. We therefore did not systematically measure the quantity of ethanol used.
Care was taken when laying the sheet on the substrate, in order to avoid prestress
and to spread a uniform liquid layer.

To aid visualization, the underside of the glass plate was painted white. The
blister was lit uniformly using a halogen lamp. Top views of the blisters were
then taken using a digital camera, with a mirror inclined at 458 with respect to
the glass plate. A home-made image-processing method was used to detect the
position of the crack front.

Figure 2 shows images of the blisters as seen from the side. Three main regimes
are observed and are shown schematically in figure 2f. At small indentor height d,
the blister is roughly circular. At moderate d, the crack front oscillates. When the
thickness of the ethanol layer is small, the undulations develop into a star shape
at higher d. This undulating regime is the only one that is sensitive to the volume of
the adhesive liquid. When d is further increased, one of the fingers of the debonded
region reaches the edge of the sheet. The crack front then becomes an open curve,
which is generally triangular but sometimes rectangular. We focus in the following
on the more generic regimes, i.e. circular, undulating and triangular blisters.
(b ) The mean radius of a closed blister

The blister is approximately circular at small indentor height d and undulates
for larger values of d. We measured the mean radius R of the blister as a function
of d in both of these regimes. We found R(d ) to be linear, with an offset of the
order of 10 mm for dZ0. This offset is due to a small indeterminacy in measuring
the displacement when the indentor touches the sheet. Therefore, figure 3
shows the curves R(d ) shifted to ensure that they pass through the origin.
Proc. R. Soc. A (2008)
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Figure 2. Different regimes for the blister shape (sheets of diameter 2R�Z180 mm). (a) A roughly
circular crack front at small indentor height (dZ3 mm, LDPE sheet, thickness hZ30 mm). (b) At
moderate indentor height (dZ1.5–6 mm), the crack front becomes unstable and oscillates with a
centimetric wavelength (PP, hZ100 mm). (c) The undulation might evolve into a star shape
(dZ10 mm, LDPE sheet, thickness hZ30 mm). (d ) The crack front becomes triangular after the tip
of one ‘finger’ has reached the edge (dZ3 mm, PP, hZ100 mm). (e) Sometimes the crack front
becomes rectangular (dZ3 mm, PP, hZ100 mm), instead of triangular. ( f(i)–(iii)) Schematics of
the blister as seen from above.
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Figure 3. (a) Mean radius of a closed blister R versus indentor height d. The symbols (circles, PP
100; squares, PP 40; diamonds, LDPE 30; crosses, LDPE 100) correspond to material type and
sheet thickness as detailed in table 1; all sheets had a radius R�Z175 mm. (b) (i) Top view and
(ii) side schematic of a circular blister.
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The linear dependence R(d ) also holds approximately when the blister crack
front is undulating, and it is insensitive to the radius of the sheet R� (data not
shown). Thus, the slope R0(d ) appears to depend only on the thickness of the
sheet, on its mechanical properties and possibly on the properties of the liquid.
This dependency will be clarified by the theoretical analysis.
Proc. R. Soc. A (2008)
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Figure 4. The instability: undulations of the blister edge. (a) Top view of a portion of the crack
front (LDPE, hZ30 mm, 2R�Z175 mm, dZ8 mm). (b) Wavelength l of the undulations as a
function of the indentor height d. In these experiments, we used 30 mm thick LDPE sheets
(diamonds) and 40 mm thick PP (circles). For each material, we used two sheet diameters 2R�:
175 mm (filled diamonds and filled circles) and 275 mm (open diamonds and open circles).
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(c ) The instability

It appears that the blister loses axisymmetry for sufficiently large
displacements dOd c. The threshold height d c at which the circular crack
front starts to undulate is highly sensitive to both the thickness of the liquid
layer and the preparation of the sheet on the substrate. d c tends to decrease for
thick fluid layers or when the sheet is not perfectly flat initially. We were not
able to determine this threshold d c in a reproducible manner. However, we were
able to reproducibly measure the wavelengths of the undulations for the
thinnest sheets. Figure 4 shows these experimental results. We note that
the wavelength of instability increases with sheet stiffness but seems rather
insensitive to the radius of the sheet. Furthermore, the wavelength does not
appear to be sensitive to the rate of loading and the undulations persist once
the indentor stops moving—in contrast with the instability of Saffman &
Taylor (1958).
(d ) The triangular blister

As the undulating crack front approaches the periphery of the sheet, a few
undulations grow larger with a finger-like shape, as in figure 2c. With further
increases in the indentor height d, one of the fingers reaches the edge first. This
causes the other fingers to retract, and the crack front becomes an open curve. If
the ethanol layer is not too thin (T20 mm), the edge of the blister relaxes to a
triangular shape rounded at one tip (figure 5a). This scenario is made possible by
the visible sliding of the sheet along the substrate in the adhering region. Upon
further increasing d, the angle at the tip of the blister at first increases but the tip
disappears at sufficiently large values of d. The crack front then consists of two
non-intersecting straight lines running between the sheet edges. We do not
consider this regime here owing to its irreproducibility and instead focus on the
range of indentor heights for which the rounded tip (B in figure 5a(ii)) is within a
few millimetres of the edge of the sheet (C).
Proc. R. Soc. A (2008)
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Figure 5. The triangular blister. (a) (i) Plan view defining the angles a and b. (ii) Schematic of a
horizontal cross section at the tip of the blister, showing the meniscus (A), tip of the blister (B) and
edge of the sheet (C). The distance AB is in the millimetric range. (b) Angle of the tip of the
triangle 2a as a function of the indentor height d. The sheets were made of the three plastics
(PP, LDPE and PA) with thickness in the range 30–200 mm. Three disc diameters were chosen:
120 mm (s); 175 mm (m); and 275 mm (l). Open circles, PP 100 (s); filled circles, PP 100 (m); open
squares, PP 100 (l); filled squares, PP 40 (m); diamond, LDPE 30 (m); triangle, PA 200 (m).
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We measured the angle bx4a, defined in figure 5a, as a function of the
indentor displacement d. This measurement is well defined and insensitive to
the curved shape of the tip. However, we plot the effective angle at the tip, 2a, as
a function of tip displacement in figure 5b. In contrast to the earlier results for
circular and undulating blisters, the radius of the sheet R� is an important
parameter for triangular blisters. As a general trend, the opening angle increases
when the bending stiffness B increases or when the radius R� decreases. We also
measured the radius of curvature rc of the crack front at the tip as we shall use it
in the theoretical section. Typical values of rc are in the range 1–4 cm.
3. Theory and comparison with experiments

The theoretical approach adopted here is to first parametrize the static blister
shape in a given regime by a single parameter. For example, we use the blister
radius, R, as the relevant parameter for circular blisters and the apex angle 2a
for triangular blisters. This allows us to calculate the deformation field in the
elastic sheet using thin plate theory (Mansfield 1989). Once the deformation field
is known, the elastic energy of deformation can then be calculated as a function
of this parameter. Adding the surface energy DgA, where A is the area of the
blister, we obtain the total energy of deformation E. The preferred value of
the shape parameter, e.g. R or 2a, may then be determined by minimizing the
energy E with respect to variations in this parameter.
Proc. R. Soc. A (2008)



J. Chopin et al.2894
(a ) The circular blister

(i) Scaling analysis

We begin by considering a scaling approach for determining the properties of
axisymmetric blisters. This approach will be verified in the more detailed
analyses that follow, which will also yield the various prefactors in these scalings.
An axisymmetric blister of radius R with a vertical displacement d at its centre is
subject to a stretching strain 3wd2/R2 from elementary geometry. The sheet has
a stretching stiffness (or spring constant) Eh and so the stretching energy

EewEh32R2wEhd 4=R2. The bending energy Eb is proportional to the curvature

(wd/R2) squared, so EbwBðd=R2Þ2R2wBd 2=R2. Finally, the surface energy
required to create the blister is simply the energy required per unit area, Dg,

multiplied by the blister area and so we have EswDgR2.1 The total energy of the
system then takes the form

EwBd 2

R2
C

Ehd 4

R2
CDgR2: ð3:1Þ

In (3.1), the blister radius is the only unknown and so we minimize this
expression with respect to R to find the blister radius R that is energetically the
most favourable. There are two limits that are of particular interest depending
on whether d/h or d[h. When d/h, Eb[Ee and so we find

Rw
B

Dg

� �1=4

d1=2: ð3:2Þ

Conversely, when d[h, Ee[Eb and we find

Rw
Eh

Dg

� �1=4

d: ð3:3Þ

Our experiments are conducted with d[h and so we expect to observe the
scaling (3.3). The argument above holds as long as the stretching energy does not
vanish. In particular, it applies to axisymmetric configurations that necessarily
induce stretching: an axisymmetric sheet takes the form of a cone of revolution,
which is impossible for an initially flat sheet unless it is allowed to stretch or is
cut. However, as soon as the axisymmetry is broken, configurations with no
stretching energy become possible (they correspond to developable configu-
rations, see, for example, Ben Amar & Pomeau 1997; Cerda et al. 1999; Cerda &
Mahadevan 2005). For such situations, these scaling analyses reveal that
stretching is enormously expensive (relative to bending) and so we expect the
system to accommodate deformation via bending. We now move on to determine
the prefactor in the scaling relationship (3.3) for an axisymmetric blister.
1 The meniscus near the contact region extends over a region of the order of the capillary length
[ch(g/rg)1/2, where r is the liquid density and g is the acceleration due to gravity. The gravi-
tational potential energy of the liquid stored in the meniscus is then Egwrg[ 2c!R[ cwgR[ c.
Provided that R[[c, we find that Es[Eg. This is always the case in our experiments and so we
neglect this effect in everything that follows.

Proc. R. Soc. A (2008)



Figure 6. Set-up and notation for the analysis of an axisymmetric blister.

2895The liquid blister test
(ii) General theory

A theoretical idealization of an axisymmetric blister is shown in figure 6. In
this geometry, the Föppl–von Kármán equations governing the vertical
displacement w of the sheet as a function of the radial coordinate r become
(see, for example, Mansfield 1989)

B
d

dr
r
d

dr

1

r

d

dr
ðrw 0Þ

� �� �
CrqðrÞZ d

dr
ðf0w 0Þ ð3:4Þ

and
d

dr
r
d

dr

1

r

d

dr
ðrf0Þ

� �� �
ZK

1

2
Eh

d

dr
ðw 02Þ: ð3:5Þ

Here, the bending stiffness B is given in (2.1), q is a load distribution and the Airy
function f is a potential for the stress

srr Z
1

r

df

dr
and sqq Z

d2f

dr2
: ð3:6Þ

For a blister of radius R, we introduce dimensionless variables

rhr=R; W hw=R; QhqR=Eh; Fhf=EhR2: ð3:7Þ
Within the blistered region (r%1), we assume that a point force acts at the origin
so that QðrÞZQdðrÞ=2pr.

Substituting the dimensionless variables in (3.7) into (3.4) and (3.5) and
integrating once with respect to r we find that (Jensen 1991)

er
d

dr

1

r

d

dr
ðrW 0Þ

� �
C

Q

2p
ZF0W 0 ð3:8Þ

and

r
d

dr

1

r

d

dr
ðrF0Þ

� �
ZK

1

2
W 02; ð3:9Þ

where

eh
B

EhR2
Z

1

12ð1Kn2Þ
h2

R2
: ð3:10Þ

For the values of h and R relevant in our experiments, e/1. We therefore expect
that the effects of bending may be neglected in comparison with stretching.
Furthermore, this assumption should be valid throughout the sheet except in
small boundary layers near rZ0, 1.
Proc. R. Soc. A (2008)
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As already discussed, bending dominates stretching for small vertical
displacements and there is a transition between bending and stretching behaviours
at intermediate displacements, as shown in our earlier scaling analysis. Cotterell &
Chen (1997) consider a related problem but their analysis is valid only for d/h(10.
The transition between bending and stretching has also been studied by Wan
(1999), albeit under the assumption that the radial and tangential stresses in the
membrane are equal and constant. In the electronic supplementary material
accompanying this paper, we consider the two-dimensional version of this problem.
We show there that the scaling (3.3), with the appropriate prefactor, is correct to
within 10% once dT4h. The assumption that d[h is true for all but the very early
stages of our axisymmetric experiment and so we shall consider here the
‘membrane limit’ eZ0.

Setting eZ0 in (3.8) we find

F0W 0 Z
Q

2p
; ð3:11Þ

which is to be solved along with (3.9) and the boundary conditions

W ð0ÞZ d=RhW0; W ð1ÞZ 0; F0ð0ÞZ 0: ð3:12Þ
(We note that we may arbitrarily set F(0) to zero because only F0 enters our
equations.) A fourth boundary condition is required to close the system. This
boundary condition should be on the horizontal displacement,

ur Z
r

Eh
ðsqqKnsrrÞ; ð3:13Þ

at the edge of the blister, where srr and sqq are the radial and circumferential
tensions in the sheet, respectively, and are given by (3.6). However, there are two
plausible conditions on ur(R). If the sheet does not slide outside the blister, then
ur(R)Z0. If sliding is permitted, then we also need to solve the equilibrium
equations outside, and we require only continuity of displacements at the blister
edge, urðRCÞZurðRKÞ. In practice, we might expect some combination of these
conditions to be realized. We shall therefore consider both of these possibilities in
the following.
(iii) No sliding

If the horizontal displacement at the blister edge is constrained to be zero, the
constitutive equation (3.13) and the definition of the Airy stress function (3.6)
yield the fourth boundary condition,

F00ð1ÞKnF0ð1ÞZ 0: ð3:14Þ
We look for solutions of (3.9) and (3.11) of the form WZW0ð1KraÞ, FZbrc,
and find that

W ZW0ð1Kr2=3Þ; FZ
3

16
W 2

0r
4=3: ð3:15Þ

This solution is well known and is given, in slightly modified notation, in
Mansfield (1989). However, this solution does not satisfy the boundary condition
in (3.14) unless nZ1/3. For values of nz1/3, a perturbation of (3.15) allows us to
Proc. R. Soc. A (2008)
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satisfy this boundary condition, as shown in appendix A. However, the
perturbative solution only changes the final result of the analysis (the predicted
blister radius R) by less than 3% for nZ0.4, which is a typical value in our
experiments. We shall therefore use only the solution in (3.15) in the main text.

The deformation field in (3.15) gives rise to dimensional stresses (see
equation (3.6)),

srr ZEh
W 2

0

4
rK2=3; sqq ZEh

W 2
0

12
rK2=3; ð3:16Þ

in the sheet. The stretching energy within the blister is then given by

Ee Z
1

2

ð
sabeab dAZ

p

Eh

ðR
0
r s2r rK2nsr rsqq Cs2qq
� �

dr Z
pð5K3nÞ

48

Ehd 4

R2
;

ð3:17Þ
where the components of the stress tensor, sab, are related to the components of
the strain tensor, eab, by the linear elastic constitutive relation (Mansfield
1989).

Combining the stretching energy in the sheet with the change in surface
energy associated with a blister of radius R, we find that the total energy of the
system is

E Z
pð5K3nÞ

48

Ehd 4

R2
CpDgR2: ð3:18Þ

Choosing R such that vE/vRZ0 then gives that

RZ
1

2

5

3
Kn

� �
Eh

Dg

� �1=4

d: ð3:19Þ

(iv) Sliding

If sliding is allowed beyond the blister, we require only the continuity of
horizontal displacement at rZ1,

F00ð1CÞKnF0ð1CÞZF00ð1KÞKnF0ð1KÞ: ð3:20Þ
Within the blister, it is convenient to introduce

jðhÞhrF0ðrÞ; hhr2: ð3:21Þ
Along with (3.11), this substitution simplifies (3.9) to

d2j

dh2
ZK

Q2

32p2
jK2; ð3:22Þ

which integrates to
dj

dh
Z

Q

4p

AjC1

j

� �1=2

: ð3:23Þ

We then consider the region outside the blister (rO1) where, by assumption,
we have W 0Z0. However, there is a non-trivial stress function F in this part of
the sheet. The most general solution of (3.9) for F is F0ZarCb=r. Requiring
Proc. R. Soc. A (2008)
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that srr(N)Z0 gives aZ0. The constant bZj(1) by the continuity of srr at rZ1,
so that

F0 Zjð1Þ=r: ð3:24Þ
The continuity of displacement (3.20) then gives j0(1)Z0, which in turn
determines AZK1/j(1) in (3.23). Integrating (3.23) analytically, subject to
F 0(0)Z0, we find that

p

2
hZK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~jð1K ~jÞ

q
CtanK1

ffiffiffiffiffiffiffiffiffiffiffiffi
~j

1K ~j

s
; ð3:25Þ

where ~jZj=jð1Þ. (We also note that the requirement that ~jð1ÞZ1 yields

QZ4pðjð1ÞÞ3=2.) This equation gives ~j implicitly in terms of h. We may also
integrate (3.11) to obtain W as a function of ~j, rather than h. We find

W ZW0

1

2
K

1

p
sinK1ð2 ~jK1Þ

� �
; jð1ÞZW 2

0=p
2: ð3:26Þ

The stretching energy for the total deformation of the sheet may be calculated
analytically to be

Ee Z
1

2p

Ehd4

R2
; ð3:27Þ

independent of the Poisson ratio n. Adding this to the surface energy pDgR2 and
minimizing the total energy with respect to variations in R, as in the previous
section, we find that

RZ
1

2p2

Eh

Dg

� �1=4

d: ð3:28Þ

(v) Experimental results

We first note that equations (3.3), (3.19) and (3.28) all reproduce the linear
dependence of the blister radius R on the indentor displacement d observed in
experiments. These models also predict that the constant of proportionality is
itself proportional to shðEh=DgÞ1=4. To go further, we rescale the experimental
data of figure 3 using the prefactor s. This rescaling allows a collapse of the data
as shown in figure 7. The slope of the experimental data is 0.5G0.1, which lies

between the slopes ð5=3KnÞ1=4=2z0:53 and ð2p2ÞK1=4z0:47 given by model 1
(no sliding outside the blister) and model 2 (sliding allowed), respectively. The
vertical scatter in the rescaled data is most likely due to the relatively large
errors in the value of Young’s modulus (10–20%) caused by the inhomogeneity
and anisotropy of the sheet. Although we could not visualize sliding in circular
blisters, we believe that it is more likely to occur when the contact is lubricated
by a relatively thick ethanol layer; solid friction would prevent sliding if the
ethanol layer is very thin. This observation has implications for the instability of
the circular blister as discussed in §3b.

The scaling in (3.19) and (3.28) has been observed previously in the
conventional blister test (Briscoe & Panesar 1991) with a theoretical analysis
presented by Wan & Mai (1995). However, we note that the coefficient there is
slightly different since the analysis of Wan & Mai (1995) explicitly assumes that
the sheet deflection takes the form of a cone WZW0ð1KrÞ. Here, we have
determined both W and F from the fully coupled problem.
Proc. R. Soc. A (2008)
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Figure 7. The axisymmetric blister. Experimental results for the non-dimensional mean radius of the
blister R/R� as a function of non-dimensional rescaled indentor height d=½R�ðEh=DgÞ1=4�. Here E is
Young’s modulus, Dg is twice the surface tension of ethanol, h is the thickness of the sheet and R� its
radius. The slope of the experimental data is 0.5G0.1, the solid line predicted by model 1 (no sliding
outside the blister) has a slope of 0.53, while model 2 (allowing the outside to slide) gives a slope of
0.47 (dashed line). Circles, PP 100; squares, PP 40; crosses, LDPE 100; diamonds, LDPE 30.
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(b ) Instability

(i) Theory

In the absence of sliding, we are unable to propose any instability mechanism.
However, when sliding is allowed, we find that the azimuthal stress, as resulting
from (3.24),

sqq ZKEh=p2ðd=rÞ2!0 ð3:29Þ
is compressive outside the blister. (Note that there is always azimuthal traction
inside, see, for example, equation (3.16).) This compressive stress could lead to a
buckling instability that we analyse here.

We suppose that this instability gives rise to a vertical displacement of size H
with wavelength l, which we assume decays over some radius ~R. The bending

energy of these fluctuations should be of the size BH 2 ~R
2
=l4. A compressive

energy within the sheet is released by going out of the plane. The perturbation to

the stretching energy has typical size KjsqqjH 2 ~R
2
=l2. Finally, the undulation of

the crack front incurs an energy penalty. The amplitude of the contact line
oscillations is H/W0, where W0 is the slope of the blister, and we find an energy

penalty Dg(H/W0)
2 coming from the perturbation to the area of the blister.

Adding these three energy terms, we find that

EwH 2 ~R
2 B

l4
K

jsqqj
l2

C
Dg

W 2
0
~R
2

 !
: ð3:30Þ
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We see that if the term in brackets is positive then increasing the perturbation
amplitude H increases the total energy and so is discouraged: the system is
stable. Conversely if this term is negative, energy may be released by increasing
the perturbation amplitude: the system is unstable. For the system to remain
stable we therefore require that

jsqqj(
B

l2
C

Dgl2

W 2
0
~R
2
h f ðlÞ: ð3:31Þ

The minimum value of the function f(l) is attained with

lZ lcw
BW 2

0
~R
2

Dg

 !1=4
wh

Eh

Dg

� �1=4 d

h

� �1=2 ~R

R

� �1=2
: ð3:32Þ

The equation (3.31) then requires that jsqqj(min f for stability, i.e.

jsqqj(
BDg

W 2
0
~R
2

 !1=2
: ð3:33Þ

Using the expression for sqq in (3.29) evaluated at rZR (where the compression
is the largest) we may write the condition of stability as

d=R(h= ~R: ð3:34Þ

This scenario involves fluctuations of the sheet on both sides of the crack front.
The compressive stress sqq outside the blister is comparable to the stress inside as
long as rwR (3.29), suggesting that the driving mechanism for the instability
acts on a scale ~RxR. The condition (3.34) then implies that the system is
unstable as soon as dTh.
(ii) Experimental results

As seen above, the system is unstable whenever sliding occurs. This accounts
for the sensitivity of the experimental threshold to the preparation of the sheet
and the thickness of the liquid layer: sliding is facilitated by the lubrication of a
thicker layer.

Following (3.32), we rescale the experimental data for the wavelength by
plotting l=½hðEh=DgÞ1=4� as a function of d/h. Figure 8 shows a satisfactory
collapse of the data onto a master curve. The power-law dependence is found to
be 0.32G0.05, which is weaker than the predicted 1/2 power. This might be
attributed to the approximation ~RZR. In fact, ~R can be smaller than R when
the stress field feels the outer boundary of the sheet—an effect neglected when
we determined the stress function (3.24). Note that other mechanisms of
wavelength selection (such as those studied in Mora & Boudaoud (2006) and
Huang et al. (2007)) would lead to no dependence on the Young’s modulus and so
cannot account for our results.
Proc. R. Soc. A (2008)
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(c ) Triangular blisters

(i) Theory

Our earlier analysis of a circular blister was based on neglecting the energy due
to bending. This simplification was valid for two reasons: (i) the energetic cost of
bending is much smaller than that of stretching and (ii) an axisymmetric
configuration necessarily induces stretching. When the crack front becomes an open
curve, the system has more freedom and thus can avoid expensive stretching. Our
analysis for triangular blisters assumes that the sheet does not undergo in-plane
stretching and so has a developable conical shape (see also Ben Amar & Pomeau
1997; Cerda et al. 1999; Cerda &Mahadevan 2005). In our system, the adhered part
of the sheet is free to slide eliminating the possibility of a ‘hoop stress’, which is an
additional complexity in previous analyses (see, for example, Cerda & Mahadevan
2005). For simplicity, we derive here the governing equation for the deformed shape
of the cone, though it may also be recovered as the small deformation limit of eqn
(4.17) of Cerda & Mahadevan (2005) in the absence of a constraint, i.e. aZ1.

A theoretical idealization of a triangular blister is shown in figure 9a. Here
we treat the angle at the tip of the triangle, 2a, as the unknown parameter to
be determined. We use a cylindrical polar coordinate system (r, q), centred
on the tip of the isosceles triangle. (Note that r is dimensional, since the non-
dimensionalization used in earlier sections is now redundant.) The only
developable shape compatible with a triangular crack front is a cone, so that

wðr ; qÞZ d
r

R� f ðqÞ; ð3:35Þ
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Figure 9. The triangular blister. (a) Theoretical idealization of the triangular blisters observed at
large displacements. (b) Experimentally measured angle at the tip of the triangle, 2a, as a function
of dZBd 2=½DgR�4�log 2R�=rc, where B is the bending stiffness, DgZ2g is twice the surface tension
of the liquid, R� is the radius of the sheet and rc is a cut-off that corresponds to the radius of
curvature of the tip. We measured bZ4a for three types of plastic material (PP, LDPE and PA)
with thicknesses ranging between 30 mm for LDPE and 200 mm for PA. Three sizes of disc were
used: 120 mm (s); 175 mm (m); and 275 mm (l). The solid curve shows the theoretical prediction
obtained by minimizing (3.42). Open circles, PP 100 (s); filled circles, PP 100 (m); open squares,
PP 100 (l); filled squares, PP 40 (m); diamond, LDPE 30 (m); triangle, PA 200 (m).
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for some unknown function f(q). Here, we shall only consider qR0—the
symmetry of the sheet shows that in fact f depends only on jqj.

The bending energy of the sheet is then given by

EbzB

ða
0
dq

ð2R�

rc

dr rðV2wÞ2 Z Bd 2

R�2 log
2R�

rc

ða
0
ðf 00C f Þ2 dq; ð3:36Þ

where rc is some cut-off length that we assume is unimportant in the following.
Requiring the bending energy in (3.36) to be stationary with respect to

variations in f, we find that

f ðivÞC2f ðiiÞC f Z 0: ð3:37Þ
Equation (3.37) has solutions of the form f ðqÞZðAqCBÞsin qCðCqCDÞcos q,
where A, B, C and D are constants to be determined from the boundary
conditions, which correspond to continuity of displacement and slope,

f ð0ÞZ 1; f 0ð0ÞZ 0; f ðaÞZ 0; f 0ðaÞZ 0: ð3:38Þ
Thus the cone profile is given by

f ðqÞZ cos qC
ðaCsin a cos aÞðsinjqjKjqjcosjqjÞKq sin q sin2a

a2Ksin2a
: ð3:39Þ

We shall adopt the same approach as earlier writing down the total energy of
the system and minimizing this with respect to variations in the angle a. The
bending energy is given by

Ebz
Bd 2

R�2
2aCsin 2a

a2Ksin2a
log

2R�

rc
: ð3:40Þ
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Using elementary geometry, the change in surface energy of this configuration
relative to the flat state is

Es ZDgR�2ð2aCsin 2aÞ; ð3:41Þ
where R� is the radius of the sheet.

Adding the two energies in (3.40) and (3.41), we find that the angle a should
be chosen to minimize

gðaÞh2aCsin 2aCd
2aCsin 2a

a2Ksin2a
; ð3:42Þ

where

dh
Bd 2

DgR�4 log
2R�

rc
: ð3:43Þ

For minima we require g0(a)Z0, which can easily be solved numerically,
yielding the solid curve shown in figure 9b. For a/1, the leading-order
behaviour of g(a) may be used to show that the total included angle at the apex
of the triangle (measured in degrees) is

2acz
360

p
ð9dÞ1=4: ð3:44Þ

We note that this scaling is consistent with the scaling analysis of §3a(i):
replacing R with aR� in (3.2) we recover (3.44). Furthermore, we find that (3.44)
is correct to within 5% provided that d!0.01.

(ii) Experimental results

In figure 9, we plot the angle at the tip of the triangle as a function of the non-
dimensional variable d defined by (3.43). We took the cut-off length rc to be the
radius of curvature of the crack front at the tip of the triangle. There is good
agreement with the theoretical curve, showing that this regime is ruled by a
balance between bending and capillary forces.
4. Conclusion

In this article, we have considered a thin sheet adhering to a stiff substrate by
means of the surface tension of a liquid. We have investigated, both
experimentally and theoretically, the debonding of the sheet under an imposed
central displacement. This is the generic debonding mode whenever the sheet is
not peeled from an edge. We uncovered three main regimes dependent on the
central displacement. For small vertical displacements, the debonded area is
axisymmetric. This regime was known previously in the context of the
conventional blister test (Dannenberg 1961; Briscoe & Panesar 1991) where
there is no liquid. The presence of a liquid in our system allows sliding and so we
derived a new analytical solution to account for this. In the second regime, the
crack front undulates, and we determined a characteristic wavelength for
the undulations. Finally, the crack front becomes triangular, and the shape of the
sheet is approximately a developable cone. Overall, our theory is in good
agreement with experiments suggesting that the present framework might serve
as a reference for the adhesion of elastic sheets.
Proc. R. Soc. A (2008)



J. Chopin et al.2904
Our study may also be relevant to small-scale biological and technological
systems such as the hair of gecko (Autumn et al. 2002) or microelectromechanical
devices (Mastrangelo & Hsu 1993; Xia et al. 1999): capillary and van der Waals
forces become increasingly important at small scales. The delamination of thin
films in general is slightly different from the one that is studied here. In general
settings, debonding is driven by in-plane prestress and so there is a compressive
azimuthal stress in the debonded part also. However, we expect our result for the
wavelength in the undulating regime to hold for the stability of delamination
blisters (Hutchinson et al. 1992). Despite this expectation, much more work is
required to fully understand the complex patterns generated by the competition
between elastic and adhesive forces.

We are grateful to Mokhtar Adda-Bedia and Kai-Tak Wan for fruitful discussions. D.V. is partially
supported by the Royal Commission for the Exhibition of 1851.
Appendix A. Membrane solution with ns1/3

In this appendix, we consider again the membrane solution for the blister given
in §3a. Recall that (3.15) was used as the solution of the membrane equations but
does not satisfy the no-slip boundary condition at the blister edge (3.14), unless
nZ1/3. Here, we look for a small perturbation to the approximate solution (3.15)
of the form,

WzW0ð1Kr2=3ÞCdW ðrÞ; Fz
3

16
W 2

0r
4=3CdFðrÞ: ðA 1Þ

Substituting these forms into the membrane equations (3.9) and (3.11) and
assuming that dW, dF/1 we find that

WzW0ð1Kr2=3CDn½r2Kr2=3�Þ; Fz
3

16
W 2

0r
4=3 1CDn 2C

3

2
r4=3

� �� �
;

ðA 2Þ
where

Dnh
3nK1

17K15n
: ðA 3Þ

Typically in our experiments nZ0.4, which corresponds to Dnz0.02 justifying
our assumption of a small perturbation.

Using the value of F in (A 2) to calculate the stretching energy in the sheet we
find, to leading order in Dn, that

Eez
p

16

5

3
Kn

� �
Ehd4

R2
ð1C6DnÞ: ðA 4Þ

Performing the same total energy minimization as earlier, we find that the radius
of the blister is

Rz
1

2

5

3
Kn

� �
Eh

Dg

� �1=4

d 1C
3

2
DnCOðDn2Þ

� �
: ðA 5Þ

Using nZ0.4, we find that the correction to the blister radius provided by (A 5)
of the earlier expression (3.19) is less than 3%.
Proc. R. Soc. A (2008)
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