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Using dimes and pennies on a checkerboard, Schelling (1971, 1978) studied the

link between residential preferences and segregational neighborhood patterns.

While his approach clearly has methodological advantages in studying the

dynamics of residential segregation, Schelling’s checkerboard model has never

been rigorously analyzed. We propose an extension of the Schelling model that

incorporates economic variables. Using techniques recently developed in sto-

chastic evolutionary game theory, we mathematically characterize the model’s

long-term dynamics.
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1. INTRODUCTION

Using dimes and pennies on a checkerboard, Schelling (1971, 1978) studied
how residential preferences at the individual level were translated into
segregational neighborhood patterns at the aggregate level. He demon-
strated that there was no one-to-one correspondence between individual
preferences and neighborhood configurations. In particular, Schelling
showed that modest racial preferences of individuals could be amplified into
high degrees of residential segregation due to dynamic feedback effects.

Schelling’s checkerboard model was one of the earliest examples of what
today would be called an agent-based model (Epstein and Axtell, 1996). A
typical agent-based model consists of a large number of agents with
heterogeneous preferences and locations. It begins in out-of-equilibrium
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conditions and agents sequentially optimize based on local conditions. In
the Schelling model, one person’s move generates externalities that induce
other people to move. This results in a dynamical system with feedback
effects. Although the model is well-known and its behavior has been stu-
died using computer simulations (see, e.g., Chapter 6 in Epstein and Axtell,
1996), it has yet to be analyzed rigorously.

Young (1998) was the first to recognize that the theory of stochastic
dynamical systems could be employed to analytically study the Schelling
model. In his book, Young proposed a simple segregation model on a one-
dimensional circle, and pointed out that residential segregation patterns
are more frequently observed in Schelling-type simulations because they
are ‘‘stochastically stable.’’

In this paper, we analyze the two-dimensional case, which is considerably
more complex. We also extend Schelling’s framework substantially by incor-
porating an endogenously determined price for housing. Using techniques
recently developed in evolutionary game theory (Foster and Young, 1990;
Blume, 1993; and Young, 1998), we characterize the model’s long-run dynamic
properties. We show that even a slight asymmetry in residential preferences
between the two groups is enough to induce endogenous segregation.

In addition to our mathematical results, we run agent-based simulations
to illustrate the evolutionary dynamics of such a process. Taking the typical
residential pattern of the 1960s as a starting point, our model is able to
generate patterns of segregation and changes in racial housing price and
vacancy rate differentials that are broadly consistent with trends in urban
areas in the United States over the past four decades.

The remainder of the paper is organized as follows. Section 2 presents
the dynamic model. Section 3 uses agent-based simulations to explore the
dynamics of segregation and show how the model relates to recent trends.
Section 4 concludes with some remarks. Mathematical proofs are given in
the Appendix.

2. A DYNAMIC MODEL

2.1 Basic Setup

Consider a lattice graph with a periodic boundary condition, i.e., a torus.
Each vertex is thought of as a residential location. Given any location i, its
neighboring locations are defined as the H vertices around i. Here H is a
fixed integer. For example, in agent-based computational models, the most
commonly used definitions of neighborhood are the ‘‘Von Neumann
neighborhood’’ and the ‘‘Moore neighborhood.’’ In a Von Neumann
neighborhood on a two-dimensional lattice, an agent considers the 4
immediately adjacent agents as neighbors, and hence H ¼ 4. In a Moore
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neighborhood, an agent’s neighbors include eight surrounding agents, and
therefore H ¼ 8 (see Epstein and Axtell, 1996, p. 40). The results of this
model are independent of any specific definition of neighborhood. All we
need is the ‘‘local’’ property of neighborhood. That is, neighborhood must
be considerably smaller than the global area.

A residential location may be occupied by a black agent, a white agent,
or may simply be vacant. The quality of housing is identical for each
location; the only difference is the endogenous price.

Let Pi be the price of housing (rent) at location i, Wi the number of
white neighbors of location i, and Bi the number of black neighbors of
location i. We assume that every agent earns the same income, Y. This is an
innocuous assumption because even if each person i earns a different Yi, all
results remain the same.

The price of housing is determined by a simplified ‘‘market mechanism’’
by which prices respond to excess demand. There is a similarity between
the labor market and the housing market. In the labor market, a fraction of
people are unemployed at any given time even though there are job
vacancies. This so-called ‘‘natural unemployment rate’’ is necessary for job
turnover. Similarly, in the housing market, there are nearly always vacant
housing units available, which facilitates housing-market turnover. The idea
of a ‘‘natural vacancy rate’’ has been proposed for the housing market
(Blank and Winnick, 1953; Rosen and Smith, 1983). We define our pricing
mechanism based on this hypothesis.

We posit a natural vacancy rate n� that is just enough to facilitate
‘‘normal’’ housing market turnover, and let ni be the actual vacancy rate of
the neighborhood where housing unit i is located. In our model, it is natural
to assume that all local markets are governed by the same n�. For simplicity,
we consider a linear pricing rule Pi ¼ a � bðni � n�Þ, where a and b are
positive constants. It simply says that if location i is in a neighborhood
where the actual vacancy rate is high, then its price will be low.1

Remember, any agent has H neighboring housing units. Thus the total
number of housing units in a neighborhood is H þ 1. Define V � as the
number of vacant units such that V �

Hþ1 ¼ n�. Then we can rewrite the pricing

rule as Pi ¼ a � bðni � n�Þ ¼ a � b H�Bi�Wi

Hþ1
� V �

Hþ1

� �
.2 Rearranging terms,

1This corresponds to the ‘‘wage curve’’ in the labor market, which describes the negative

relationship between wages and local unemployment (see, for example, Blanchflower and

Oswald, 1994).

2Writing H �Bi �Wi as the total number of vacancies, we are assuming that location i is

always considered occupied when its price is calculated. We need this assumption to avoid

‘‘dynamic inconsistency’’. Without this assumption, location i commands different prices

before and after an agent moves in, which seems odd. This assumption is innocuous especially

when H is large.
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we have Pi ¼ aðHþ1Þ�bðH�V �Þ
Hþ1

þ bðBiþWiÞ
Hþ1

. By choosing a proper currency unit,
we can multiply the righthand side of the previous equation by a constant
Hþ1

b
and get Pi ¼ aðHþ1Þ�bðH�V �Þ

b
þ ðBi þ WiÞ ¼ c þ ðBi þ WiÞ. Notice here

c ¼ aðHþ1Þ�bðH�V �Þ
b

is a constant, which is the portion of the housing price
that every agent has to pay no matter where he=she lives. Therefore, a
model where every agent earns Y and pays Pi ¼ c þ ðBi þ WiÞ is equivalent
to a model in which every agent earns Y � c and pays Pi ¼ Bi þ Wi. That
is, it is innocuous to normalize c to 0. As we proceed, we will work with the
simplest form of linear pricing without loss of generality:

Pi ¼ Bi þ Wi ð1Þ
There is no legal restriction on any agent’s residential choices, but all

else being equal, a white agent is assumed to prefer to live near white
agents rather than near black agents. Since housing is homogeneous in
terms of quality, only the price of housing enters the utility function. We
assume that a white agent living at location i has utility
Uwi ¼ Y þ pWi � Pi ¼ Y þ ðp� 1ÞWi � Bi, where p > 0. A positive value
of p implies that the more white neighbors (the fewer black neighbors) a
white agent has, the happier he or she is. Y � Pi can be interpreted as the
dollar value of all non-housing goods consumed. Letting y ¼ p� 1 > �1,
we then have

Uwi ¼ Y þ yWi � Bi ð2Þ
Assume that, unlike whites, blacks are color neutral. (Some survey data,

e.g., the General Social Survey, support this asymmetric assumption. See
also Farley et al., 1978; and Farley, Fielding, and Krysian, 1997). They care
about the price of housing but not about their neighbors’ color. So a black
agent living at location j has utility Ubj ¼ Y � Pj ¼ Y � Wj � Bj. This is
simply the dollar value of all non-housing goods consumed:

Ubj ¼ Y � Wj � Bj ð3Þ
Agents have opportunities to move. In each period of time, a pair of

locations is chosen randomly. If both locations are vacant, nothing will
happen. If one location is vacant and the other is occupied, the agent in the
occupied location may choose to move to the other. If both locations are
occupied, the two agents may want to exchange residential locations (see
Young, 1998, for a similar setup). Of course, agents make their decisions
according to their utilities.

There are 5 types of moves:

1. A black agent moves to a vacant location;
2. A white agent moves to a vacant location;
3. A black agent exchanges residential location with a white agent;
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4. A black agent exchanges residential location with a black agent;
5. A white agent exchanges residential location with a white agent.

2.2 A Potential Function

Let SW be the sum of all agents’ utilities:

SW ¼
X

i

UiðY ;Wi;BiÞ;

then we have the following observation.

Claim 1: The change in SW is always twice as much as the change in

the moving agent’s (agents’) utility.

Claim 1 is straightforward. Consider a white agent who is moving. The
number of white (black) neighbors he or she leaves behind is exactly equal
to the number of whites (blacks) who lose a white neighbor because of the
move; similarly, the number of white (black) neighbors the mover has in
the new neighborhood is equal to the number of whites (blacks) who get a
new white neighbor. A similar statement can be made for a black mover.
Thus, if a move is advantageous for the moving agent, then positive
externalities exceed negative externalities, and the move is also advanta-
geous for the agent’s former and current neighbors as a group. See the
proof in the Appendix.

Suppose the total number of vertices of the lattice is N. We define a state
x as an N-vector, with each element xi 2 fblack;white; vacantg describing
the situation at vertex i. We use r to denote SW=2:

r ¼ 1

2

X
i

UiðY ;Wi;BiÞ:

Thus r is a function defined on the set of all states X.
A move may involve one or two agents. If only one agent is involved, let

u be the agent’s utility; if two are involved, let u be the sum of their utilities.
When agents get the chance to move, each of their action sets is
fA1;A2g ¼ fmove;don0t moveg. If agents move, they may change the state
(residential pattern).

Claim 1 simply tells us that

uð�jA1Þ � uð�jA2Þ ¼ rð�jA1Þ � rð�jA2Þ: ð4Þ

Definition 1 (Monderer and Shapley, 1996): Let G be an n-person game
with finite strategy sets Z1;Z2; . . . ;Zn. The payoff function of player i is
ui : Z ! R, where Z ¼ Z1 � Z2; . . . ;Zn is the set of strategy profiles. A
game G is a potential game if there exists a function l : Z ! R such that
for every i and for every z�i 2 Z�i,
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uiðx; z�iÞ � uiðy; z�iÞ ¼ lðx; z�iÞ � lðy; z�iÞ; for every x; y 2 Zi:

l is called a potential function of this game.
By equation (4), our spatial game is a potential game, and r is a potential

function.
This potential function allows us to ignore the details of the dynamics.

By keeping track of this potential, we will have enough information about
how the game is played. If the potential increases, we know some agents
have taken utility-improving moves; if it decreases, we know some agents
have made bad decisions, diminishing their utilities. As we shall see later,
the potential function greatly simplifies our analysis of the dynamic prop-
erties of the game.

2.3 The Log-linear Behavioral Rule

We assume that agents are boundedly rational; in particular, they some-
times make mistakes and take utility-decreasing moves. Suppose the
probability that agents choose ‘‘move’’ (A1) when they have the chance is
determined by the following equation:

PrðA1Þ ¼
ebuð�jA1Þ

ebuð�jA1Þ þ ebuð�jA2Þ
; b � 0: ð5Þ

A standard justification of this rule follows from the usual interpretation
of the logit model in econometrics: Agents’ utilities are subject to shocks
that follow an i.i.d. extreme value distribution (McFadden, 1973; Brock and
Durlauf, 1999). Alternatively, it can be interpreted as ‘‘perturbed’’ decision
making in which agents occasionally deviate from playing their ‘‘best
response’’ (Blume, 1993, 1997; Young, 1998). Clearly, agents become very
unlikely to make utility-decreasing moves as b ! 1.

2.4 Main Results

We define xt as the state at time t, so we have a finite Markov process. Let’s
use Pb to denote the Markov process (its transition probability matrix). We
call it a perturbed process because the system is subject to shocks and
agents do not always make ‘‘correct’’ decisions. Small values of b imply big
perturbations; the perturbation vanishes as b approaches infinity. Pb is
irreducible because there is a positive probability of moving from any state
to any other state in a finite number of periods. Pb is aperiodic because the
process can travel from any state x to x itself in any finite number of
periods. Hence, by elementary Markov Chain theory,3 Pb has a unique

3Karlin and Taylor (1975) is a standard reference.

152 J. Zhang



stationary distribution mb satisfying the equation mbPb ¼ mb. Moreover,
mbðxÞ is the cumulative relative frequency with which state x will be
observed when the process runs for a long time. It is also the probability
that state x will be observed at any time t given that t is sufficiently large.

Definition 2 (Foster and Young, 1990): A state x 2 X is stochastically

stable relative to a perturbed process Pb if limb!1 mbðxÞ > 0. The sto-

chastically stable set is the smallest set that contains all the stochastically
stable states.

A stochastically stable state will be observed much more frequently than
a state that is not stochastically stable. As b ! 1 and t ! 1, it is likely
that the system will be in the stochastically stable set.

Since N is finite, we know there must exist a state x that is associated
with the maximum SW. Let S be the set of all such states that maximizes
SW:

S ¼ fxjrðxÞ 	 rðyÞ; 8y 2 Xg:

With the potential function and the probabilistic decision rule, we can
prove the following proposition.

Proposition 1: S is stochastically stable under the perturbed process.

That is, in the long run, we will see a state in S almost all the time

given that b is large.

This result immediately follows Theorem 6.1 in Young (1998).
Proposition 1 is fairly intuitive. If x is a state in S, then we know x has

the highest potential. Let’s say y is a state outside S and y differs from x at
exactly two vertices. Obviously, there are many such y’s. If the two differing
locations are chosen by chance, then with one move (or switch), y can
change into x and vice versa. Since y is not in S, it must have a lower
potential. We know for certain that the move=switch changing y into x is a
‘‘good’’ move, because it increases potential and hence increases the
mover’s utility. By our decision rule, if the move increases the mover’s
utility, it happens with a very high probability. On the contrary, the
move=switch changing x into y decreases potential and the mover’s utility,
so it happens with a much lower probability. Therefore, it is likely that y

becomes x, but unlikely that x becomes y. That is, it is easier to fall into the
set S, but very difficult to get out of it. As a matter of fact, it is always easier
to evolve to a state with higher potential than to a state with lower
potential. Remember that S contains all those states with the highest
potential. No matter where we start, if b is large and enough time passes,
we will eventually arrive at a state in S and then stay in S for a long time.
Even if we get out of it by chance, we will eventually fall back into it again.
In mathematical terms, this means:
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lim
b!1

lim
t!1

Prfxt 2 Sg ¼ 1: ð6Þ

This is precisely the defining property of the stochastically stable set.

Claim 2: If the number of vacant locations is small enough relative to N,

then every x* 2 S is a state in which white agents are clustered together,

and black agents are scattered all over the rest of the landscape. In par-

ticular, vacancies tend to be in black areas rather than white areas.

This seems obvious given the utility functions of the two groups of
agents. Therefore, blacks and whites are segregated in a state x*.

Let’s say that not many locations are vacant. Then proposition 1 and
Claim 2 lead to the following proposition.

Proposition 2: If blacks are color-neutral and whites have a slight

preference for like-color neighbors, then, in the long run: (i) residential

segregation is observed most of the time; (ii) the rate of vacancy is

higher in black neighborhoods than in white neighborhoods; and (iii)

whites pay more than blacks do for equivalent housing.

Everything here follows from the previous proposition and Claim 2. As
we will see in the simulation presented in the following section, given an
initial condition similar to the situation in the 1960s, Proposition 2 explains
what happened after the Fair Housing Act put a ban on racial discrimina-
tion in the housing market.

This model is an enriched version of Schelling’s checkerboard model.
Schelling’s original model assumed that both groups of agents prefer to live
with like-color neighbors (although it has been shown that the preference
need not be too strong to achieve segregation). In this enriched version, an
important improvement is that one group’s preference for like-color
neighbors is sufficient for segregation, because the higher price of housing
keeps the other group away.

Empirical studies have suggested that income inequalities between
blacks and whites play a minor role in explaining residential segregation
(Taeuber and Taeuber, 1965; Massey and Denton, 1993). This model helps
us better understand why income disparity may not be a crucial determi-
nant. In the model, blacks clearly can afford to live in any neighborhood
that whites can afford, because they earn the same income. However, they
choose not to. The reason is simple economics: if people have better
alternatives, then they may not buy something even if they can afford it. In
this scenario, whites are willing to pay a premium to live with other whites.
This preference bids up the price of housing in white neighborhoods.
Blacks have no reason to pay the premium for living with whites, so they
simply choose the less ‘‘crowded’’ (in a topological sense but not in a
Euclidean sense) and less expensive residential areas left by whites.
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The model describes a world where whites flee from blacks. However, we
do not deny the existence of a different world, especially during the first
half of the twentieth century, in which whites kept blacks away by dis-
criminatory housing prices, by restrictive covenants, or even by more
hostile actions. We do not expect Proposition 2 to hold up in such a world.

It is worth noting that any variation of Schelling’s ‘‘checkerboard’’ model,
like ours, has a welfare implication. Segregation is such a robust result that
it is compatible with various assumptions at the individual level (See
Schelling, 1971, and Zhang, 2004). In general, segregation could be an
optimal or suboptimal outcome depending on individuals’ preferences.
Therefore, the welfare implication of any segregation model should be read
with caution. The basic setup of our model implies social optimality of
segregation. Yet, simulations show that all the results of the model still hold
if we introduce some non-linearity into the utility functions. In those cases,
segregation is no longer socially optimal. Such non-linear models are
extremely messy to work with, if not entirely intractable.

3. AGENT-BASED SIMULATIONS

In contrast to Proposition 2, which is a limiting result, this section examines
the dynamic properties of the model with finite parameter values. We shall
also explore some variations of the model.4 All these are done with agent-
based simulations on a 30630 landscape. We use the Moore neighborhood
definition, in which each agent considers the eight surrounding locations as
neighboring locations.

3.1 Properties of the Model: The First Simulation

This first simulation demonstrates how the segregation model works.
Figures 173 present the outcomes from a typical run with y¼ 1, b¼ 2, and
Y¼ 10. A residential location is painted dark gray if it is occupied by a black
agent, light gray if occupied by a white agent, and left blank if it is vacant.
‘‘APB’’ and ‘‘APW’’ are the average prices of housing paid by blacks and
whites, respectively.

We start our simulation in a random state: 400 black agents and 400
white agents are randomly distributed on the 30630 landscape and hence
100 locations are vacant (Figure 1). In this initial state, blacks and whites
are mixed together and pay roughly the same price for housing. As time
goes on, black and white clusters begin to emerge, and eventually are

4Interested readers may want to try out the simulations presented here and many other

variations. The Java Applet is available from the author upon request.

A Dynamic Model of Residential Segregation 155



FIGURE 1 A random initial state.

FIGURE 2 A snapshot in the short run.
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completely segregated. Prices paid by blacks and whites start to differ
shortly after the start. In the long run, the price differential is substantial,
and vacancies are much more likely in black neighborhoods (Figure 3).

Figure 4 depicts the trajectory of the potential function starting from a
random state. While the potential function exhibits a rising trend over time,
it does decrease from time to time, which reflects the fact that people make
utility-decreasing moves occasionally. The speed of the increase in the
potential is declining: it starts with a steep upward trend and flattens out
eventually. Corresponding to this dynamic is the evolution of residential
patterns: starting from a random state, patches of whites and blacks soon
appear on the landscape as individuals move, which drives up the potential
quickly. Clusters of whites expand as other whites find such neighborhoods
attractive, and at the same time, nearby blacks are pushed away by high
prices in white clusters. At this stage, the rise of the potential slows down.
Little by little, white clusters join each other, and eventually all white
clusters merge into a single white area. This final step takes a long time as
the boundaries of clusters shift back and forth. Although the system only
approaches the stochastically stable state and is not exactly in it with finite

FIGURE 3 Segregation in the long run.
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parameter values, highly segregated residential patterns emerge long
before the dynamical system comes close to a stochastically stable state.

Proposition 2 holds while b approaches infinity, and thus we want to
know how finite values of b affect the dynamics of the model. Notice that,
since any utility function is invariant to linear transformation, the value of b
is meaningful only relative to the unit of utility. Following the literature, we
define ‘‘waiting time’’ as the time it takes for the dynamical system to reach
a certain state for the first time. Again, starting from random initial states
with y ¼ 1 and Y ¼ 10, we examine how the waiting time varies with b until
the potential rises above 7800. As shown in Figure 5, the expected waiting
time is a decreasing function of b. From the behavioral rule we know that
b ¼ 0 means that agents move randomly without considering racial com-
position in neighborhoods. In that case, a segregated neighborhood can
only emerge by chance, but the chance is so small that we almost never see
it. So the expected waiting time is infinitely large when b is close to zero.
The simulation shows that the expected waiting time drops sharply as b
increases from 0. Before the value of b reaches 1, the waiting time hits a
plateau and turns flat. Beyond that point, small increments in the b value
have negligible impacts on waiting time.

We also tried other variations, such as different relative population sizes
and different proportions of vacancies. Segregation as well as price and
vacancy differentials emerge under all alternative parameterizations. In
general, such alternative parameterizations also influence expected waiting
time. However, comparative statics in those cases produce few insightful

FIGURE 4 Evolution of potential starting from a random state.
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results. Nonetheless, it is worth noting that the proportion of vacancies has
limited impact on the speed of segregation. This is only because we allow
agents to exchange residential locations. If we rule out the possibility of
trading locations, a smaller proportion of vacancies significantly reduces
the speed of segregation.

3.2 Recent Trends of Segregation: The Second Simulation

Here we briefly discuss a parallel of several trends of segregation and show
how our model helps explain them.

Since the Fair Housing Act of 1968, housing in urban America has been
characterized by the persistence of racial segregation, the expansion and
consolidation of black ghettos, and substantial changes in racial housing
price and vacancy rate differentials.

The dramatic formation of black ghettos began in the early twentieth
century. The Fair Housing Act was intended to eliminate racial dis-
crimination in the housing market. Since its passage, the level of residential
segregation has dropped slightly. Though this declining trend is robust, the
decreases are modest, and the level of segregation remains very high
(Cutler, Glaeser and Vigdor, 1999; Farley and Frey, 1994).

Since 1970, there has also been a trend toward black suburbanization,
which has effectively expanded black ghettos and pushed the color line into
the suburbs. Ghettos, in the meantime, sprawled in such a way that
previously distinct black communities merged with one another. As a

FIGURE 5 Expected waiting time as a function of beta.
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FIGURE 6 An initial state with ghettos.

FIGURE 7 A transitional state.
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result, blacks are not only highly separated from whites, but also con-
centrated in a few large geographic areas that span city and suburb (Clark,
1981; Connolly, 1974).

There has also been a shift in the relative price of housing in black and
white neighborhoods. In the mid-twentieth century, blacks tended to live in
lower-vacancy neighborhoods and paid a higher price for equivalent
housing than whites (see, e.g., Weaver, 1948; Duncan and Duncan, 1957;
King and Mieszkowski, 1973; and Yinger, 1978). At the end of the twentieth
century, black neighborhoods were characterized by higher vacancy rates
and lower housing prices than white neighborhoods (see, e.g., Chambers,
1992; Reifel, 1994; and Zhang, 2001).

The existing literature does not provide an adequate account of these
trends. This second simulation shows how our model helps explain the
recent history of urban development. We start with a state in which seg-
regated enclaves are already established and free mobility is suddenly
introduced, similar to what happened in the 1960s. Until that time, legally
sanctioned discriminating practices, such as segregational zoning ordi-
nances, restrictive covenants, and racial steering, were common in urban
housing markets throughout the U.S., which greatly limited the supply of
housing for blacks. Consequently, in cities such as Chicago, Cleveland, and
Detroit, the price of housing paid by blacks was artificially high. For the
same reason, housing vacancy rates were extremely low in black

FIGURE 8 Segregation persists with reversed price and vacancy differentials.
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neighborhoods. Our initial state in Figure 6 reflects the situation at that
time: a high level of segregation, high housing prices and low vacancies for
blacks. (Of course, black ghettos need not be so square and regular.)

Suppose that racial discrimination is now banned by law, and the
simulation starts with y ¼ 1, b ¼ 2, and Y ¼ 10. As time goes on, with no
discriminating forces, blacks begin to ‘‘invade’’ white neighborhoods
(Figure 7). This shows a promising sign of desegregation. However, as
blacks appear, many whites choose to move to other predominantly white
neighborhoods, leaving blacks behind. Eventually, the ‘‘invasion’’ of blacks
results in a retreat by whites. The color line is shifted, ghettos expand and
segregation remains at a high level (Figure 8). Moreover, we see in Figure 8
that whites now pay higher prices for equivalent housing and that vacancy
rates are lower in white neighborhoods, contrary to the initial state. This is
exactly how urban development occurred in the U.S. over the past four
decades.

3.3 Nonlinear Utilities: The Third Simulation

For simplification and tractability, we have assumed linear utility functions
in our mathematical model. While the mathematical model serves as a good
benchmark, it is worth trying various alternative setups with the simulation
to test the robustness of the results. Simulations shows that asymmetric
residential preferences are the key driver of the model; non-linear utilities
that deviate somewhat from the setup in the benchmark model are able to
produce similar results. Most important, segregation in such cases does not
necessarily correspond to optimal or close-to-optimal states.

For example, in a variation, we assume that blacks are color neutral but
whites have the following utility function:

Uwi ¼ Y � Pi þ p1 minfWi; xg
� p2 maxf0;Wi � xg; p1; p2 > 0 and 0 < x < H :

It is a kinked utility function that peaks at x. That is, if a white agent i has
less than x white neighbors, an additional white neighbor adds to his or her
utility; if i has x or more white neighbors, the next white neighbor causes
disutilities. It reduces to our benchmark model if x ¼ H . Since we use the
Moore neighborhood in the simulation, an agent could have 8 neighbors. We
choose x ¼ 5, which means that a white agent is most happy in a neigh-
borhood that is about 60 percent white (5=8). Other parameters take the
following values: p1 ¼ 2, p2 ¼ 0:5, b ¼ 2, and Y ¼ 10. The asymmetry of
the preference is reflected in p2 < p1, which implies that a predominantly
white neighborhood is more attractive to a white agent than a pre-
dominantly black neighborhood, even though predominantly white neigh-
borhoods are not ideal for any white agent.
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Figure 9 shows a typical long-run residential pattern. Severe segregation
still emerges and price and vacancy differentials are still significant. Starting
from a random state, the segregation dynamics evolve as follows: At first,
those whites who have few white neighbors start to move to neighborhoods
that are more than half white. This has two impacts. On the one hand, the
neighborhoods left behind by those white movers will necessarily become
‘‘blacker’’ and even less attractive to other whites; on the other hand, those
moves crowd out blacks from the destination neighborhoods and they are
naturally directed to predominantly black neighborhoods by the price
mechanism. Before long, most neighborhoods where blacks live become so
black that no whites would like to reside in them; whites in such black
neighborhoods would prefer to move to an all-white neighborhood rather
than stay. This process pushes segregation towards its extreme.

While segregation is striking in the long run in this alternative setting, it
is not complete. In particular, the white area is not 100 percent white. This
is because an all-white neighborhood with one or two vacancies is not
attractive to a white agent since it is already too white, but it is quite
appealing to some blacks because it is reasonably cheap. For this reason,
we always see a few blacks scattered throughout white neighborhoods; but
whites will never consider going across the color line because it represents
a big utility loss. This asymmetry not only creates price and vacancy dif-
ferentials, but also makes segregation stable once it is established. As a

FIGURE 9 Segregation under integrationist preferences.
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result, although whites in fact prefer mixed neighborhoods, they end up
with segregated ones because of the asymmetric preferences. This provides
another illustration of Schelling’s insight that macro behavior can deviate
substantially from micro motives. Zhang (2004) further shows that segre-
gation could emerge even if both blacks and whites prefer mixed neigh-
borhoods. In Figure 9, only 12.5 percent of whites have 5 white neighbors;
77.3 percent of them have more than 5 like-color neighbors. Not surpris-
ingly, if we choose x > 5, the simulation produces more striking segregation
results than that seen in Figure 9.

4. CONCLUDING REMARKS

We have shown that the Schelling-type simulation models can be rigorously
analyzed using techniques recently developed in evolutionary game theory.
For three decades, segregation in the Schelling model has been known as
an ‘‘emergent and persistent phenomenon.’’ We have now translated the
loose description into a precisely defined mathematical concept. By
explicity formulating residential moves as a spatial game, we have
embedded the analysis of segregation into a game-theoretic framework
where various analytical tools are readily available.

We have enriched the Schelling model by adding a simplified housing
market. Our model shows that one group’s preference for like-color
neighbors is sufficient to cause residential segregation. People in this group
live together and bid up housing prices. The higher price keeps people
away from the other group. The housing market plays an important role in
the dynamics of segregation. Without the housing market, segregation will
not emerge if individuals are initially assigned to locations randomly. In
addition, the housing market has enhanced the power of the Schelling
model. Our model not only generates segregation but also produces pre-
dictions of the housing market. In particular, taking the situation prior to
the Fair Housing Act of 1968 as an initial state, our model is able to account
for many observed regularities over the past 40 years, such as the persis-
tence of segregation, the reversal of housing price differentials, and the
reversal of housing vacancy differentials.

We recognize that there exist alternative explanations of residential
segregation. For example, differential preferences for local public goods,
such as school quality, could produce similar segregation results and
housing price discrepancies. Our model proposes a competing hypothesis
that invites further investigation to determine which theory better
accounts for the empirical data. The model has shown that, without any
discriminatory behavior in the housing market, a slight preference for like-
color neighbors in one race can give rise to a high level of residential
segregation and cause it to persist. While institutionally sanctioned
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discrimination might have been sufficient to create segregation historically,
out model suggests that the elimination of discrimination may not be suf-
ficient to achieve desegregation.

5. APPENDIX: PROOFS

Proof of Claim 1

Proof: We first consider the case in which the two locations chosen are not
neighboring ones.

Type-1 move: Suppose black agent k moves from location i to a vacant
location j. Then her individual gain is ðY �Wj � BjÞ � ðY �Wi � BiÞ ¼
ðWi þ BiÞ � ðWj þ BjÞ. Each neighbor of i (white or black) gains 1 unit of
utility, and each neighbor of location j (white or black) loses 1 unit of
utility. So the net social gain is agent k’s gain plus her former and current
neighbors’ gain: ðWi þ Bi �Wj � BjÞ þ ðWi þ Bi �Wj � BjÞ ¼ 2ðWi þ Bi

�Wj � BjÞ, which is twice as much as the individual gain.
Type-2 move: Suppose white agent t moves from location p to a vacant

location q. Then her individual gain is ðY þ yWq � BqÞ � ðY þ yWp � BpÞ
¼ ðyWq � BqÞ � ðyWp � BpÞ. Eachwhite neighbor ofp loses y units of utility,
and each black neighbor of location p gains 1 unit of utility, so their net gain is
Bp � yWp. Each white neighbor of q gains y units of utility, and each black
neighbor of location y loses 1 unit of utility, so their net gain is yWq � Bq. The
total net gain is agent t’s gain plus her former and current neighbors’ gain:
ðyWq � Bq � yWp þ BpÞ þ ðBp � yWp þ yWq � BqÞ ¼ 2ðyWq � Bq � yWp

þBpÞ, which is again two times the individual gain.
Type-3 move: Suppose a black agent at vertex u chooses to exchange

residential location with a white agent at vertex w. This is equivalent to the
situation in which the black agent moves to a vacant location w and the
white agent moves to a vacant location u. If the black agent’s gain is g and
the white agent’s gain is h, then their individual gain is g þ h. By our
previous argumants, the social gain is always twice as much as the indivi-
dual gain. So, the change in SW is 2ðg þ hÞ.

Since the other two types of moves involve same-color agents, individual
and social gains are both 0. The relationship is still maintained.

It is not difficult to verify that the relationship holds even if the two
locations chosen are neighboring locations.

Proof of Proposition 1

Proof: This is essentially a repetition of Young’s proof of Theorem 6.1
(Young, 1998).
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Let mðxÞ be the stationary distribution of the perturbed process, which
specifies the probability that a state x is visited in the long run. We define
Pxy as the transition probability from state x to y. The detailed balance

condition states:

mðxÞPxy ¼ mðyÞPyx; 8x; y 2 X :

We claim that the stationary distribution takes the following form:

mðxÞ ¼ ebrðxÞP
z2X

ebrðzÞ
; ð�Þ

where r is our potential function.
If x ¼ y or Pxy ¼ Pxy ¼ 0, ð�Þ satisfies the detailed balance condition. If

x 6¼ y and Pxy 6¼ 0 or Pxy 6¼ 0, then it must be true that x differs from y at
only two locations i, j. If the total number of vertices is N , then these two
locations will be chosen with probability 1=fNðN � 1Þg. It follows that:

mðxÞPxy ¼ ebrðxÞP
z2X

ebrðzÞ

8><
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>;

1
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ebuð�jdon0t moveÞ � ebrðyÞ�brðxÞ

ebuð�jmoveÞ þ ebuð�jdon0t moveÞ

� �

¼ ebrðyÞP
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ebrðzÞ
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>:

9>=
>;

1

NðN � 1Þ �
ebuð�jdon0t moveÞ

ebuð�jmoveÞ þ ebuð�jdon0t moveÞ

� �

¼ mðyÞPyx:

Therefore, (*) satisfies the stationary equation becauseX
x2X

mðxÞPxy ¼
X
x2X

mðyÞPyx ¼ mðyÞ
X
x2X

Pyx ¼ mðyÞ � 1 ¼ mðyÞ:

This implies that (*) is a stationary distribution of the perturbed pro-
cess. Since the process is finite and irreducible, it has a unique stationary
distribution, which must be defined as (*).
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From (*), we immediately conclude that the states that maximize social
welfare are stochastically stable, because the perturbed process assigns
positive probability to those states when b?1 .

Proof of Claim 2

Proof: Consider the lattice graph on a torus, some of whose vertices are
occupied by black or white agents, with the rest vacant. Neighboring ver-
tices are defined as in the Moore neighborhood. We add all diagonal edges
so that all neighboring vertices are connected. We refer to an edge by the
two vertices it connects. For example, we refer to an edge as {b, w} if it
connects two vertices occupied by a black agent and a white agent. The
order doesn’t matter here.

We will proceed with the following notations:

n7total number of vertices.
nb7the number of vertices occupied by black agents.
nw7the number of vertices occupied by white agents.
nv7the number of vacant vertices.
Eij7total number of {i, j} edges, i, j 2 {b, w, v}.

Given the utility functions of the two groups of agents, we know
SW¼nY�2Ebb�2Ebwþ2yEww. If our goal is to maximize Eww only, then
we need to have white agents clustered together. This can be proved by
negation.

Each vertex of the graph has degree 8, i.e., it is connected with eight
neighboring vertices. If we count all the edges connecting a white vertex
with a black or a vacant vertex, and double count all the edges connecting
two white vertices, then we get the total degree of all white vertices. In
fact, we have three such relations:

2Eww þ Ewb þ Ewv ¼ 8nw ðiÞ
2Ebb þ Ewb þ Ebv ¼ 8nb ðiiÞ
2Evv þ Ewv þ Ewv ¼ 8nv ðiiiÞ

Suppose for the time being there are no vacant locations, then by equation
(i) and (ii) we have:

ð2Eww þ Ewb þ 0Þ þ ð2Ebb þ Ewb þ 0Þ ¼ 8ðnw þ nbÞ:
) Eww þ Ebb þ Ewb ¼ 4ðnw þ nbÞ ¼ constant:

Cleary, to maximize SW ¼ nY � 2Ebb � 2Ebw þ 2yEww ¼ nY � 8ðnw

þnbÞ þ 2ðyþ 1ÞEww, we need to maximize Eww given that y ¼ p� 1 > �1.
That is, we must have all white agents clustered together.

A Dynamic Model of Residential Segregation 167



Now, we add some vacant locations. Let’s first have the predetermined
number of whites on the landscape and fill the other locations with black
agents. At this moment, to achieve the maximum social welfare, we need to
maximize Eww. Then, to get the right number of black agents, we will take
nv blacks away from the landscape. Let’s first take 1 black agent away; it
must be true that Eww remains unchanged and (EbbþEwb) decreases by
eight. Notice that eight is the maximum number of those types of edges
that can be reduced by removing one black agent. Suppose nv is small
enough so that we can remove nv black agents, one after another, with each
having eight black or white neighbors. In other words, after nv black agents
are removed, we still have Evv¼ 0. (This can be achieved as long as
nv�nb=4. Interested readers can try this out.) By this construction, we
guarantee that social welfare is at its maximum at each state. At the end,
when all nv blacks are removed, social welfare is still at its maximum. At
the same time, Eww is also maximized because we never moved any white
agents.

We know any rearrangement of the configuration cannot increase social
welfare. By equation (i) and (ii), we have:

ð2Eww þ Ewb þ EwvÞ þ ð2Ebb þ Ewb þ EbvÞ ¼ 8ðnw þ nbÞ:
) 2ðEww þ Ebb þ EwbÞ þ ðEwv þ EbvÞ ¼ 8ðnw þ nbÞ: ðivÞ

Since Evv¼ 0, equation (iii) reduces to EwvþEbv¼ 8nv. By equation (iv),

2ðEww þ Ebb þ EwbÞ ¼ 8ðnw þ nbÞ � 8nv:

Eww þ Ebb þ Ewb ¼ 4ðnw þ nb � nvÞ ¼ constant:

Therefore, SW ¼ nY � 2Ebb � 2Ewb þ 2yEww ¼ nY � 8ðnw þ nb � nvÞ
þ2ðyþ 1ÞEww can achieve its maximum only by maximizing Eww and
hence minimizing (EbbþEwb) at the same time. So whites are clustered
together.

Proof of Proposition 2

Proof: It trivially follows from Theorem 1 and Claim 2.
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