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Abstract

This paper presents a variation of the Schelling [J. Math. Sociol. 1 (1971) 143; T.C. Schelling, Mi-
cromotives and Macrobehavior, Norton, New York, 1978] model to show that segregation emerges
and persists even if every person in the society prefers to live in a half-black, half-white neigh-
borhood. In contrast to Schelling’s inductive approach, we formulate neighborhood transition as a
spatial game played on a lattice graph. The model is rigorously analyzed using techniques recently
developed in stochastic evolutionary game theory. We derive our primary results mathematically
and use agent-based simulations to explore the dynamics of segregation.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In 1982, the General Social Survey asked all black respondents this question: “If you could
find the housing that you would want and like, would you rather live in a neighborhood
that is all black; mostly black; half black, half white; or mostly white?” It turned out that
55.3% preferred to live in a half-black, half-white neighborhood. In 1990 and 1996, the
General Social Survey asked all respondents (most of whom were white) a similar question
regarding their attitude towards living in a neighborhood where half of their neighbors were
blacks. Over 60 percent of the respondents answered “neither favor nor oppose,” “favor,”
or “strongly favor” Qavis and Smith, 1999

The survey results sharply contrast with the realities of our society where residential
segregation persists at high levels. Even if we refer to neighborhoods that are 40—60 percent
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Table 1

Percentage of blacks who live in a half-half neighborhood

Metro area Neighborhoods in sample Half-half neighborhoods Percentage (%)
Baltimore 581 25 3.80
Buffalo 289 12 2.49
Chicago 1885 71 2.91
Cleveland 829 34 2.97
Detroit 1273 40 2.56
Milwaukee 428 16 2.74
St. Louis 456 20 4.24
Washington 911 63 5.96

black as “half black, half white” neighborhoods, we find that a very few number of blacks
actually live in these neighborhoods in major metropolitan aréalsl¢ 1, data from 1990
Census). How then should we interpret the survey data? If many whites and blacks desire
integrated neighborhoods, then why do we not observe more of them in our society?

Social scientists frequently use survey data to study people’s preference of neighborhood
race and their attitude toward racial integration. Many authors repeatedly note that surveys
reveal more tolerance for mixed race neighborhoods than is actually found in our highly
segregated urban ared=afley et al., 1978, 1997; Bobo and Zubrinsky, 1996 classic
study by Thomas Schelling sheds light on this disjunction between individual preferences
and social outcomes. By moving dimes and pennies on a checkeriSudeljing (1971)
demonstrated that moderate preferences for like-color neighbors at the individual level can
be amplified into high levels of segregation. Later &chelling (1978)used numerous
examples to illustrate further that macro social patterns could deviate from micro motives
substantially. Although presented informally, Schelling’s findings have been influential
across disciplines in social sciences. In the past three decades, his work inspired many
“tipping” models and agent-based simulations (egpstein and Axtell, 1996 However,
because proper analytical tools were unavailable, there was no important development
following Schelling’s original modelYoung (1998)was the first to point out that techniques
newly developed in the theory of stochastic dynamical systems can be used to analyze the
Schelling model. This paper represents such an attempt.

In this paper, we will extend Schelling’s original results and mathematically prove that
segregation may emerge and persist even if everybody prefers integrated neighborhoods.
In particular, we will construct an artificial world where all agents think integrated neigh-
borhoods most desirable. However, as we shall show, even in such a world, residential
segregation almost surely appears. Our purpose here is not to replicate the real world ex-
actly. Instead, we will attempt to provide some insights that can help us better understand
the real world phenomenon of segregation. The most important message we want to convey
is that a phenomenon may prevail in a society despite what people want or feel is “good.”
It is quite possible that such phenomena persist only because the cost of deviation is too
high. We think residential segregation at present might be such a phenomenon.

1 In empirical studies, neighborhoods are usually approximated by census tracts. In general, census tracts have
between 3000 and 8000 residents and boundaries that follow visible features such as rivers, highways, or major
streets.
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We want to point out that once blacks and whites are segregated, it is a long journey back
to reintegration. It is particularly worth noting that the first step toward integration involves
some blacks moving into predominantly white neighborhoods or some whites moving into
predominantly black neighborhoods or both. This first step may never be achieved if people
feel extremely uncomfortable when isolated in an opposite-color neighborhood, even if they
like the idea of a 50-50 mixed neighborhood. If nobody wants to take the first step, then
the society is stuck with segregation.

In contrast to Schelling’s inductive approach, we shall derive our results mathematically.
We formulate neighborhood transition as a spatial game played on a lattice graph. Agents
decide to move in response to local racial composition, creating a game-theoretic situation
with feedback loops. The dynamic game is analyzed using techniques recently developed
for Markov process with random perturbations. We prove that the stationary distribution
of the Markov chain concentrates almost exclusively on the states with the minimum num-
ber of black—white neighboring pairs. That is, in the long run, we rarely find blacks and
whites living as neighbors. In addition, we show that the segregational pattern emerges
regardless of the initial state. For the first time, we put a Schelling-type model on rigorous
footing.

The rest of the paper is organized as follo@&ction 2presents the model and the
main result.Section 3explores the dynamics of segregation with agent-based simulation.
Section 4concludes with some remarks.

2. The model
2.1. An artificial world

Our model is a variation of Schelling’s famous “checkerboard model.” One difference
is that we do not have vacant spaces in this model and hence individuals move by switch-
ing residential locations. It is as if there exists a centralized agency that processes all the
information about who wants to move and which two agents may want to switch.

Consider arV x N lattice graph embedded on a toriis the set of vertices. Each
vertex inV is occupied either by a black agent or by a white agent. Consider any type of
neighborhood defined locally. In particular, we assume that any agent congicegerts
around her as her neighbors. LEetbe the collection of all unordered pairs |), where
agentd andj are neighboring agent&: = {(i, j)|i and;j are neighboring agents

An agent’s payoff (utility) has two parts: a deterministic tarthat depends on how many
like-color neighbors she has in the local neighborhood, and arandona teattaptures the
value of other relevant characteristics of the neighborheadassumed to be independent
both across agents and across residential locations because different agents value different
characteristics and different neighborhoods have different idiosyncratic traits. An agent’s
payoff is interpreted as how much he or she likes to pay for a residential location in a
neighborhood. The deterministic term of every agent’s payoff function is assumed to be a
kinked curve, depicted iRig. 1 The function peaks at, which is half of her total number
of neighbors. On the left side af the function is linearly increasing; on the right sidenpf
it is linearly decreasing. It is relatively steeper on the left side. Linearity is assumed for the
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Payoff [u]

u=[ZZ - M) + [M - Z)in
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Fig. 1. Payoff profile.

simplicity of analysis. By letting be the number of like-color neighbors one has, we can
write the deterministic part of an agent’s payoff function as

ZX .
— if x <n,
_Jn
u= (M — Z)x . Z>M>D0. Q)
(2Z — M) + ——— otherwise

n

The shape of the payoff function means that every agent wants 50-50 mixed neighbor-
hoods most. Although people do not prefer segregated neighborhoods, they feel better if
they belong to the majority group rather than the minority group. That is, for a white agent,
a 30-70 black—white ratio is better than a 70-30 black—white ratio; the opposite is true
for a black agent. Empirical evidence suggests that this is a plausible assumption. Multiple
reasons could explain the inclination towards one’s own race including cultural concerns,
fear of potential hostility from the other group, or fear of isolation.

An agent’s total payoff is written as

Bu(-) +e,

whereg is a positive constant. Paramegatetermines the relative importance of the random
term. If 8 is close to zero, the random term is very important, and the racial composition
of the neighborhood plays a minor role in an agent’s decisiof;sf close to infinity, the
random term is unimportant, and only the racial composition matters. Every agent has the
sameg.

Agents may exchange residential locations. In each period of time, a pair of agents is
randomly chosen from two different neighborhoods. The chosen agents are allowed to con-
sider switching residential locations according to their own interests. Utility is transferable.
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We assume that if one agent gains more in a switch than the other agent loses, then they
will negotiate over a proper amount of transfer, and the switch is likely to happen. This
allows us to focus on the sum of two chosen agents’ payoffs because they always attempt
to maximize it by a joint decision.

If the two picked agents do not switch residential locations, the sum of their payoffs is

{Bu1(-|not switch + €1} + {Bu2(-|not switch + €2}
= B{u1(-|notswitch + ua(-|not switch} + {€1 + €2} = BU + n.

If the two picked agents do switch residential locations, the sum of their payoffs is

{Bua(-|switch) + A1} + {Bu2(-[switch) + A2}
= Blus(-|switch) + ua(-|switch)} + {A1 + A2} = BV + &

A switch will happen if and only if8U + n < BV + &. FollowingMcFadden (1973)we
assume thaj and¢ are independent and follow identical extreme value distribution whose
cumulative distribution function and probability distribution function are

F(x) =exp(—e™),  flx) =exp(—x —€™").
Then,
Pr{switch} = Pr{pU +n < BV + &} = Prin < BV — BU + &}

=/ FBV — BU + &) - f(&) d&

= /OO exp(—e AVHPU=E) L exp(—& — %) dE

—00

00 eﬁU eﬁV
= [ o[-t (T
_ / explt — e tef]de

=exp(—¢) - / expl—( — ¢) — e ¢ D]1d(E - ¢)

— exp(—¢) - / & — ¢ dE — ¢)

eV e 4 e
= eX[:(—d)) ‘1= m, Whel’ed) =In (T) .
Therefore,
e/S[ul(‘|switch)—t—uz('|switch)]
Pr{switch} = B> 0.

eBlui(-|notswitch+uz(-[not switch] + eBlua(-|switch +uz(-[switch)] *
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We call this a log-linear switch rule, which is derived using the method developed by
McFadden. This kind of behavioral rule is commonly used in the literaBiteie, 1997;
Brock and Durlauf, 2001; Young, 1998t simply says that if a switch increases the agents’
deterministic utilities, they are more likely to do it. Notice, even if a switch decreases the
two agents’ deterministic utilities, it is still possible that they do it. The possibility of such
a “mistake” depends oA. A big g implies that “mistakes” are rarely made. In particular,
asp approaches infinity, the probability of a switch approaches 1 if the switch gives higher
utilities. In that case, the model reduces to one with agents playing best-reply to their
environments.

By integrating out random utilities, we now have a behavioral rule that only involves
deterministic utilities. Random ultilities are unobservable. Thus, from now on, we will
ignore random utilities by working with the behavioral rule.

2.2. Apotential function

We define a set ED as the set of all edges that connect two agents of different colets: ED
{(i, j) € Eliand; have different colors A function p is then defined as the cardinality of
the set ED ;o = |ED].

In empirical analysis, many indices have been developed to measure residential segrega-
tion. AsMassey and Denton (198@dint out, differentindices measure different dimensions
of segregation such as evenness, exposure, clustering, and concentration, although all are
highly correlated. In the artificial world, the functign(after being properly normalized)
serves as a natural index of segregation. In particular, it measures the degree of exposure
(degree of potential contact) between the members of the two ethnic groups. It indicates
the extent to which blacks and whites physically confront one another by virtue of sharing
a common residential aréa.

The functionp has another attractive property. It can serve as a potential function for
this spatial gamé.When two like-color agents exchange their residential locations, the
residential pattern is not affected, and the value of functidnes not vary either. Thus we
can focus our attention on the cases in which a black and a white agent are chosen.

Figs. 2 and 3Jllustrate two types of black—white switch. As we shall show below, the
changes irp are always proportional to the changes in the moving agents’ payoffs.

2.2.1. Typel
Consider two agents 1 and 2. Agent 1 is at point A in her payoff profile, and 2 is at point
B. Suppose agents 1 and 2 decide to switch residential locations. After the switch, 1 ends

2 In the empirical literature, two related measures of exposure, isolation and interaction are commonly used.
The isolation index measures the degree to which minority members are exposed only to one another, which is
computed as the minority-weighted average of the minority proportion of the population in each neighborhood.
The interaction index measures the exposure of minority members to majority members, which is computed as the
minority-weighted average of the majority proportion in each neighborhood. When there are only two groups, the
two indexes sum to 1. High values of isolation and low values of interaction indicate high levels of segregation.
See Massey and Denton for more detailed discussion.

3 A game is a potential game if the changes in every player’s payoff can be characterized by the first difference
of a function. The function is then called the potential function of the gavten(lerer and Shapley, 1996
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Payoff [u]

1] h 2n

# of like-color neighbors

Fig. 2. Type | switch.

up with A’ and 2 ends up with BFig. 2). Leta be the horizontal distance from A toand
b be the horizontal distance from B to These two agents’ payoffs before and after the
switch are then summarized Tiable 2

We can now compute agentI's gai®Z — M) + (M — Z)(n + b)/n — Z(n —a)/n =
{(Mb+ Z(a — b)}/n. Agent 2'sgain iS2Z — M) + (M — Z)(n +a)/n — Z(n — b)/n =
{Ma+ Z(b—a)}/n. Their gains sum up ttMa+Mb) /n = 2(a+b) « M/(2n). HereM/(2n)

Fayoff [u]

1] h 2n

# of like-color neighbors

Fig. 3. Type Il switch.
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Table 2
Utility changes in a type | switch
Location Utility
A Z(n —a)
n
B Z(n —b)
n
A @z my+ Y =D +D
n
M—-Z
B @2z my+ Y=D0+D

n

is a constant, and(2 + b) is the change (decrease) in the total number of neighboring
black—white pairs (i.e.Ap).

2.2.2. Typell
Consider two agents 3 and 4. Agent 3 is at point C in her payoff profile and 4 is at point
D. Suppose 3 and 4 decide to switch and they end up with poinasi @D, respectively
(Fig. 3. Letc be the horizontal distance from Ciaandd be the horizontal distance from
D to n. These two agents’ payoffs before and after the switch are summariZedlisn 3
Agent 3's gainisZ(n — d)/n — Z(n — ¢)/n = Z(c — d)/n. Agent 4's gain iS2Z —
My+M—-2Z)n+c)/n—2Z—M)— (M —-Z)(n+d)/n = (M — Z)(c—d)/n. The sum
is (Mc — Md)/n = 2(c — d) x M/(2n). Again, M/(2n) is the same constant, antc2- d)
is the change (decrease) in the total number of neighboring black—white paira)e.,
Types | and Il and their reverse switches in fact exhaust all possible types of black—white
switches. We can inflate the value pfoy a constaniM/(2n). Therefore, in general, if a
switch increases the moving agents’ payoffsAly, the value of functiorp will decrease
by AU:

{u1(-|switch) + uo(-|switch)} — {u1(-|not switch + u2(-|not switch}
= —{p(-|switch) — p(-|notswitch}.

Hence,—p is a potential function of this game. That is, utility-improving switches
always reduce the total number of black—white neighboring pairs. In other words, if a

Table 3
Utility changes in a type Il switch
Location Utility
c Z(n—o¢)
n
o Z(n —d)
n
M-Z
D @2z my+ YU=D0 4D
n
D' (ZZ_M)+(M—Z)(n+C)
n
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black agent and a white agent gain from trading residential locations, they will necessar-
ily have more like-color neighbors after the switch. This is easy to understand if before
the trade the black agent lived in a predominantly white neighborhood while the white
agent lived in a predominantly black neighborhood. In this case, both agents have more
like-color neighbors after the switch and hence the total number of black—white pairs
becomes smaller. From the payoff profile, we know that in general an agent could also
improve her utility by moving into a neighborhood with fewer like-color neighbors. For
example, a white agent will be happier if moving out of a 80% white neighborhood to
a 60% white neighborhood. However, in that case, she can never find a black trading
partner because the black agent has to move out of a 40% black neighborhood to a 20%
black neighborhood. The white agent’s gain is not enough to compensate her partner’s
loss.

It is important to recognize that, in contrast to the utilities that measure individual ef-
fects of the switch, the potential functiehp summarizes the social effects. Particularly,
p covers the social externalities caused by the moving agents. For example, when a white
agent in a predominately black neighborhood decides to trade with a black agent in a pre-
dominantly white neighborhood, their personal utilities may increase. However, this move
causes both neighborhoods to deviate further from the 50-50 racial mixture. Therefore, all
their neighbors in the two neighborhoods, either white or black, suffer from this switch. The
moving agents have no reason to take into account these externalities. However fanction
decreases as the switch leaves fewer black—white neighboring pairs in the society, reflect-
ing the loss of utilities in the whole population as the society moves a step further toward
segregation.

2.3. Themain result

We useAy to denote theV x N lattice. A state is defined as a functien: Ay —
{black white}, which labels each site with the color of its occupant. Lettihige the state
at timet, we have a finite Markov process. LRt denote the Markov process (its transition
probability matrix). We call it a perturbed process because agents do not always make
“correct” decisions, depending on the valuggoSmall values of8 imply big perturbations;
the perturbation vanishes g@sapproaches to infinityP? is irreducible because there is
a positive probability of moving from any state to any other state in a finite number of
periods.P? is aperiodic because the process can travel from any statex itself in any
finite number of periods. Hence, by elementary Markov chain the&#,has a unique
stationary distribution u? satisfying the equatiop? PP = uf. Moreover, uf(x) is the
cumulative relative frequency with which statevill be observed when the process runs
for along time. It is also the probability that stateill be observed at any timiegiven that
tis sufficiently large.

Definition. (Foster and Young, 1990A statex € X is stochastically stable relative to the
perturbed process if ligyL. o 1#(x) > 0. Thestochastically stable set is the smallest set
that contains all the stochastically stable states.

4 Karlin and Taylor (1975)s a standard reference.
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A stochastically stable state will be observed much more frequently than a state that is
not stochastically stable. A% — oo andr — oo, it is very likely that the system is found
to be in the stochastically stable set.

Let X be the set of all states. Defifas a set of states that minimize the value of function
oS ={x|p{x} < p(y), Vy € X}. Afinite N guarantees th&is non-empty.

Proposition 1. In the artificial world we just described, Sis stochastically stable, i.e.,
Mo liMp_ oo Pr{x’ € S} = 1.

Proposition 1s a special case of Theorem 6.vioung (1998)In general, in any potential
game with the log-linear revision rule, the set of all the states that maximize the potential
function is stochastically stable. In our mode}, is the potential function, so the states that
maximize—p (minimize p) are stochastically stable. That is, in the long run, we observe
such states almost all the time.

We knowp measures inter-racial contacts in our model. If a stais in S, it minimizes
inter-racial contacts. Henog € S represents a segregated configuration. It then follows:

Proposition 2. Inthelong run, if 8 islarge, residential segregation is observed almost all
thetime.

Note that how much people prefer 50-50 neighborhoods is irrelevant here. The world is
locked in segregation primarily due to people’s attitudes toward the two extremes: all-black
and all-white neighborhoods. This model, in spirit, is similar to the insight recently discov-
ered in evolutionary game theory that shows that an evolutionary process is more likely to
select a risk-dominant equilibrium rather than a Pareto-dominant equilibrium ir & 2
game Kandori et al., 1993; Young, 1933

3. Agent-based simulation

Proposition 2s a limiting result for larges. In this section, we use agent-based simulation
to study the dynamics of segregation with finite parameter values. Although our analyti-
cal results do not depend on any specific neighborhood definition, one naturally wonders
how neighborhood size may affect the time to converge. This is also examined here using
simulation.

3.1. Neighborhood definitions and payoff functions

Three simple definitions of neighborhood are commonly used in the agent-based simu-
lation literature: the von Neumann neighborhood, the Moore neighborhood, anf2jhe
neighborhood (seEig. 4). In a von Neumann neighborhood, an agent considers the four
adjacent agents as neighbors; a Moore neighborhood includes the eight surrounding agents;
and ther(2) neighborhood covers 12 agents inside a “circle” with radius 2.

We arbitrarily pickZ = 1 andM = 0.6 for Eg. (1) and obtain a payoff function
asEq. (2) Corresponding to each of the three neighborhoédg, (2) gives a specific
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von Meumann MNeighborhood

Moore Neighborhood

r{2) Meighborhood

Fig. 4. Neighborhood definition.

payoff profile that yields value 0 for no like-color neighbor, peaks at value 1 for the
half—half mixed neighborhood, and declines to 0.6 for 100 percent like-color neighbors (see
Table 4.

if x <n,

u= 4 @
4 — & otherwise
n

S =

=

Table 4

Payoff functions used in the simulation

X uN (@) =2 uMN () |1z u@ (x)| =6
0 0 0 0
1 0.5 0.25 0.167
2 1 0.5 0.333
3 0.8 0.75 0.5
4 0.6 1 0.667
5 - 0.9 0.833
6 - 0.8 1
7 - 0.7 0.933
8 - 0.6 0.867
9 - - 0.8

10 - - 0.733

11 - - 0.667

12 - - 0.6
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Time: 0 Row: 1800

Fig. 5. A checkerboard initial state.

3.2. Emergence of segregation

We first run a simulation on a 100 100 landscape to show how segregation emerges
spontaneously. We use the Moore neighborhood and proceedswith10. The utility
profile is specified ifmable 4

The simulation starts with a checker board configuration, where every agent is living
in a 50-50 neighborhood-{g. 5. In this “Pareto” state, everyone is getting the highest
payoff and the residential pattern is socially optimal. However, the “Pareto” state can-
not last long because the cost of deviation is very low. Once some agents accidentally
change their residential locations, their neighbors become less satisfied than before, so
when chances come, they will move too. It is not hard to imagine that the moves tend to
lead to segregation. Consider two neighborhoods, one of which is predominantly black
and the other predominantly white. If a white agent is selected from the predominantly
black neighborhood and a black agent is selected from the other, it pays for them to
switch because both will have higher utilities after they do so. This makes the predom-
inantly black neighborhood “blacker” and the predominantly white neighborhood “whiter.”
On the contrary, if a black agent is picked from the predominantly black neighborhood
and a white agent is picked from the other, they are not likely to switch because they
will suffer a loss for doing so. This means that once segregation emerges, it tends to
persist.

In our simulation, we see segregation start to emerge as time godsgré) If we
wait long enough, we see thatfig. 7, blacks and whites are almost completely separated.
The boundary between them is reducing to its minimum, and blacks and whites rarely
share same neighborhoods. As the simulation shows, once a clear color line is established,
neighborhood transition becomes stagnant. Obviously, many agents are not happy with this
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1T | |
Time: 1003032 Rouw: 802

Fig. 6. A snapshot in the short run.

situation. However, they can do nothing about it individually. In a sense, this is a problem
of coordination failure.

3.3. Neighborhood, g8, and waiting time

Proposition 2predicts that segregation emerges in the long run. Thus, it is important to
know how long the long run really is. Although in theory the period of time is abstractly

11

[T11
Time: 3736002 Rou 430

Fig. 7. A snapshot in the long run.
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defined and thus hard to relate to real world time, it always makes sense to ask what
affects the speed of convergenédlison (1993)first illustrated that local interaction has

a big impact on transition time. Particularly, if agents play games with others in a smaller
neighborhood, all else being equal, a shorter time is needed to reach a situation in which
a large proportion of the population play an equilibrium stratégpung (1998)further
showed that the transition time is bounded from above regardless of the population size if
the interaction structure satisfies certain conditions.

In our model, multiple factors determine the waiting time before a certain degree of segre-
gation emerges. For example, coefficignheighborhood structure, initial state, population
size, and the method used to pair trading partners are all relevant parameters. Since the ef-
fects of the last three are fairly transparent, we focus our attentighaom neighborhood
definition. Two points are worth noting here. First, the valug efmeaningful only relative
to the unit of the payoff function(x). One can always inflate the payoff values, reduce the
value of 8 accordingly, and have exactly the same model. Second, the neighborhood in our
model is a “reference” group instead of an “interaction” group as in many other spatial
games (e.g., games analyzeddilison, 1993. In our model, an agent switches residential
location with an agent in another neighborhood based on the racial composition of the two
neighborhoods. IiEllison (1993) an agent plays the game only with other agents in the
same neighborhood. Because of this difference, Ellison’s results are not directly applicable
here.

Again, we run the simulation on a 160100 landscape. We use different neighborhood
definitions and, under each definition, differghvalues. Simulations start with random
initial states. We measure the waiting time before the absolute value of the potential function
(p) falls below 600 Payoff function are specified as Table 4 and the results are plotted
in Fig. 8

Remember, the value of paramefedetermines the relative importance of the random
utility. A B equal to zero means all agents move randomly without reference to racial
composition. In that case, segregation is almost never achievable and the waiting time is
close to infinity. In fact, for8 < 2, our computer simulations never reach a state with a
potential below 600. The waiting time declines sharply witkarying in a small range
around 2: apg = 4, simulations always end fairly quickly. A&increases from 4 to around
40, the expected waiting time decreases at ever slower rates. p\@es beyond 40, the
expected waiting time responds very little fovalues Fig. 8). Therefore, although the
limiting result of Proposition zholds only a8 approaches infinity, we could expect to see
a segregational pattern fairly close to the limit with a firte

If every agent views the whole landscape as a single neighborhood, then moving does
not alter the neighborhood’s racial composition. In that case, moving becomes a random
decision, and therefore the waiting time for segregation is infinitely long. Obviously, seg-
regation will emerge and persist only if agents consider neighborhood a local concept.
One naturally wonders, all else being equal, whether a smaller neighborhood always im-
plies a shorter waiting time. This is a particularly important question because agent-based

5 Notice, the potential function is defined with respect to neighborhood definition. In order to make results under
different neighborhood structures comparable, here we always measure the potential with respect to the Moore
neighborhood.
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Fig. 8. Waiting time.

models almost always use small neighborhoods, much smaller than most real world notions
of neighborhoods (see, e.gpstein and Axtell, 1996

We run our simulation under different neighborhood definitions and compare the expected
waiting time inFig. 8 Interestingly, we find that a bigger neighborhood actually decreases
the waiting time for segregation. Under the Moore neighborhood in which an agent has
eight neighbors, the expected waiting time is less than half of that under the von Neumann
neighborhood which only assigns four neighbors to each agentr(Bhaneighborhood
covers 12 neighbors for each agent, leading to even a shorter waiting time, although not
much shorter than under the Moore neighborhood.

The relation between neighborhood size and waiting time becomes easier to understand
if we consider different determinants of waiting time that are affected by neighborhood
size. The “potential game” property of our model again helps clarify our thinking. The
transition time to segregation is nothing but the time it takes for fungtitndecline from
a high value to some cutoff value (in this case, 600). We call a swvailobntageous if it
could increase the two agents’ utilities. Then, how spaeaches the cutoff depends on
the following factors:

(1) how quickly advantageous trading pairs are formed,
(2) how likely that a pair will switch residential locations,
(3) how much reduction gb results from each advantageous switch.

Of course, agents may mistakenly make disadvantageous switches. However, since such
activities are rare given largg we focus on factors (1)—(3). Suppose we shift from Moore
neighborhoods to smaller von Neumann neighborhoods. When agents have fewer neigh-
bors, they are less differentiated by neighborhood characteristics. That is, under the von
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Neumann neighborhood, an agent finds many other people in the society living in the same
kind of neighborhood as she does. As a consequence, it now takes longer to form an ad-
vantageous trading pair. On the other hand, once a pair is matched, the potential gain is
higher, and hence the switch is more likely to happen, redupihy a larger amount.
Wheng is large, any positive gain will lead to a switch almost surely, thus factor (2) makes
little difference. Factors (1) and (3) work in opposite directions. Our simulation results
suggest that (1) dominates (3). That is, when neighborhoods are smaller, although each
switch deducts a bigger value from it actually takes a lot more time to find such a trad-

ing pair. Therefore overall, smaller neighborhoods take longer to segregate. Notice that
this is similar to the general idea that evolution tends to be more rapid when it may pro-
ceed via a sequence of smaller steps rather than requiring sudden large clidiigges (
2000.

This result should be understood with two caveats. First, larger neighborhoods may lead to
shorter waiting time only when the neighborhood size is much smaller relative to the whole
space. As neighborhood size approaches the whole area size, we know that segregation will
never happen. Second, factor (1) works against small neighborhoods partly because of the
way our model dynamics are defined. In particular, our model assumes that two agents are
paired at random, regardless of the size of their potential gains. In reality, this may not be
true since discontent agents may be motivated to find trading partners more quickly through
information channels such as advertisements.

The simulation allows us to try more variations of the model. For example, we also
learned that the linearity of the payoff function is not crucial for our qualitative results,
although it simplifies our analysis substantially. What is crucial is that people feel happier
in a neighborhood where their own color forms the majority than in a neighborhood where
they are the minority. As survey evidence shows, this kind of residential preference is fairly
common in reality.

4. Concluding remarks

Following Schelling (1971, 1978)we have constructed a dynamic model to understand
the evolution of residential segregation. While Schelling’s insights are enlightening, his
original paper took an inductive approach and demonstrated all his results with simple
examples. For more than three decades, the well-known Schelling model has never been
mathematically analyzed. Our paper is a first attempt to put a Schelling-type model on
rigorous footing. We formulate neighborhood transition as a spatial game played on a lattice
graph. Segregation is characterized as a stochastically stable state that tends to emerge and
persist in the long run regardless of the initial state.

Our mathematical approach has improved upon Schelling’s analysis of segregation in
at least three aspects. First, our model proposes an analytical measure of segregation. In
Schelling’s original model and in those variations analyzed by others using computer sim-
ulations, segregational patterns are always presented as a visual effect. That is, researchers
simply look at simulation results to tell whether segregation emerges. Here we use the total
number of black—white neighboring pairs to quantify segregation, enabling us to determine
whether one configuration is more segregated than another. Conceptually, it is equivalent
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to the indices of inter-racial interaction widely used in empirical literature. Our measure is
potentially useful in other agent-based models of segregation.

Second, our model explicitly defines agents’ utilities, thus allowing us to make explicit
welfare implications. In any free society, people move according to their own interests.
When a person chooses a neighborhood, she helps redefine the neighborhood. Her entry
may affect other neighbors’ welfare, an aspect not taken into account when the person is
making the decision. As a consequence, individually optimal actions may lead to a socially
sub-optimal outcome. This kind of externality from social dynamics is made transparent in
the potential function of our model that relates segregation, a non-optimum social outcome,
to utility gains at the individual level.

Third, our model borrows the notion of stochastic stability from evolutionary game theory
to characterize rigorously the phenomenon of residential segregation. For three decades,
segregation inthe Schelling model was known as an “emergent and persistent phenomenon.”
We translate this loose description into a rigorous equilibrium concept. The analysis of
segregation is thus embedded in a game-theoretic framework in which a wide range of
existing results and analytical tools are readily applicable.

The mathematical analysis is particularly insightful to highlight the stability property
of segregation. In a dynamic model of segregation, there exist millions of Nash equilibria.
However, to identify all Nash equilibriais not very useful. Remember, in a Nash equilibrium,
no single agent has incentive to deviate, but if any agent makes a “stupid” move, the
equilibrium may fall apart. Based on this idea, the stochastic stability concept asks which
state is the most stable one. This state is the most difficult one to tip away and takes a large
number of “stupid” moves to alter. By definition, the most stable state will prevail, regardless
of its optimality. Scholars who study residential segregation with survey data only identify
what residential pattern is most acceptable to people. However, without the knowledge of
its stability, one has no reason to expect such a residential pattern to emerge and persist.

Our model has shown that segregation may prevail in an all-integrationist world because
of its stability. Elimination of discrimination and fair housing legislation are not sufficient
for residential desegregation, even if desegregation is an ideal of every individual in the
society. If it is believed that mixed neighborhoods are socially optimal residential patterns,
more specific public policies leading in that direction are warranted.
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