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Abstract. We propose a Nelson-Winter model with an explicitly defined landscape
to study the formation of high-tech industrial clusters such as those in SiliconValley.
The existing literature treats clusters as the result of location choices and focuses
on how firms may benefit from locating in a cluster. We deviate from this tradition
by emphasizing that high-tech industrial clusters are characterized by concentrated
entrepreneurship. We argue that the emergence of clusters can be explained by the
social effect through which the appearance of one or a few entrepreneurs inspire
many followers locally. Agent-based simulation is employed to show the dynamics
of the model. Data from the simulation and the properties of the model are discussed
in light of empirical regularities. Variations of the model are simulated to study
policies that are favorable to the high-tech economy.
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Do not regard Silicon Valley as some sort of economic machine, where
various raw materials are poured in at one end and firms such as Apple and
Cisco roll out at the other, but rather as a form of ecosystem that breeds
companies: without the right soil and the right climate, nothing will grow.

– The Economist, March 29, 1997
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1 Introduction

Silicon Valley is the most salient example of high-tech industrial clusters. Public
policy makers throughout the world would like to learn the secrets of Silicon Valley
in order to build their own high-tech economies. The existing literature on indus-
trial clusters, which traces back to Marshall (1920), focuses on the way in which
firms benefit from locating in a cluster; it suggests that once a cluster comes into
existence, it tends to reinforce itself by attracting more firms. However, a more
important question is how to reach this critical mass in the first place. In contrast to
the literature, evidence suggests that entrepreneurs rarely move when they estab-
lish high-tech start-ups (Cooper and Folta, 2000). This contradicts the notion that
location choice analyses lead entrepreneurs to a high-tech cluster.

A high-tech industrial cluster such as Silicon Valley is characterized by concen-
trated entrepreneurship. Following Schumpeter, we emphasize the fact that “the
appearance of one or a few entrepreneurs facilitates the appearance of others”
(Schumpeter, 1934). We propose an agent-based computational model to show how
high-tech industrial clusters could emerge in a landscape in which no firms existed
originally. The model is essentially a spatial version of the Nelson-Winter model:
Boundedly rational agents are scattered over an explicitly defined landscape. Each
agent is endowed with some technology, which determines his firm’s productivity
(if he has one). During each period of time, an agent with no firm would make a
decision as to whether he wants to start one. This decision is mostly affected by the
behavior of his social contacts, who are all his neighbors. If an agent’s neighbors
are successful in their entrepreneurial activities, the agent is more likely to found a
firm himself. An entrepreneur makes business decisions according to some rules of
thumb. When an agent does start a firm and begin to make a profit, he spends part
of his profit on R&D in order to improve his productivity, part on imitating other
firms’ technology, and the rest on capital accumulation. Entrepreneurs who lag be-
hind in the Schumpeterian competition lose money and eventually fail; however, it
is possible that they learn from their failures and try again.

We use an agent-based simulation to show that Silicon Valley-type industrial
clusters will emerge spontaneously on the landscape. In addition, the model exhibits
the following properties: 1) First mover’s advantage: the first firm has a better chance
to survive and grow; a region in which firms enter the market early tends to capture
a large piece of the industry. 2) Path dependence: the more firms a region has,
the more it tends to have; once a cluster is formed, it can hardly be toppled. 3)
Clustering of entrepreneurship: firms are continuously forming and dying within
clusters. 4) Clustering of innovations: the productivity in clusters is much higher
than elsewhere because of the collective learning within clusters through innovation
and imitation.

Data from the simulation and the properties of the model are discussed in light
of empirical regularities. We also explore variations of the model in order to study
the factors that determine the location of emerging clusters. We learn two lessons
from the model. First, the conventional knowledge-spillover literature may only
tell part of the story; the contagion of entrepreneurship through peer effects seems
to be an important mechanism through which high-tech industrial clusters emerge
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and grow. Second, while many scholars have recognized the importance of “seed
capital” for a budding high-tech regional economy, our model suggests that “seed
entrepreneurs” may be even more important because they serve as local role models
and inspire new entrepreneurs.

The main contribution of this paper is the application of a novel methodological
approach to study the formation of industrial clusters and related policy issues.
While agent-based computational economics has introduced new tools for economic
analysis, we have yet to see applications of this approach in policy analysis. This
paper intends to fill in the blank. As our model shows, the agent-based approach is
particularly useful for dealing with dynamic economic systems. It is also flexible
for testing the effects of alternative assumptions.

The remainder of the paper is organized as follows. Section 2 reviews related
literature. Section 3 presents the model. The agent-based simulation of the model
is described in Section 4. The last section concludes with some remarks.

2 Related literature

Our model builds upon the intersection of several strands of the literature.

2.1 The Nelson-Winter paradigm

The term evolutionary economics has been used in different contexts and by var-
ious groups of economists, including institutional economists, evolutionary game
theorists, and those who follow Nelson and Winter (1982). The Nelson-Winter
paradigm of evolutionary economics is a synthesis that integrates three sources of
work: Simon’s concept of “bounded rationality,” Nelson’s and others’ work on in-
vention and innovation (following Schumpeter), and Alchian’s and Winter’s work
on “natural selection” in economic evolution.

A typical Nelson-Winter evolutionary model defines the state of the industry
by a list of firm level state variables such as physical capital and productivity.
Minimum environmental characteristics are specified, which may include input
and output conditions, the space of innovations, and the way innovative search
takes place. Based on these, the activities of the industry in the current period are
calculated and in turn generate new values of state variables for the next period.
New technology or new rules may be adopted if they increase expected profitability.
Calculations are conducted for a series of periods and are used to study the evolution
of technology, the application of rules, and other characteristics of the industry
(Anderson et al., 1996). The Nelson-Winter paradigm provides a powerful and
general theoretical framework for studying variety-creation and variety-selection
within a given economic sector. Up until now, researchers within this tradition have
worked with very simple examples; the potential of the general schema is far from
fully exploited.1

1 Nelson and Winter (1982) is a classic reference of their paradigm. Nelson (1995) gives a review of
more recent developments in this area and related fields.
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2.2 Agent-based computational economics

Agent-based computational economics uses computer simulation to study the econ-
omy as an evolving system of autonomous interacting agents. Researchers in this
field try to understand why certain macro-level regularities emerge and persist in
decentralized market economies, despite the absence of any forms of centralized co-
ordination. For example, the agent-based computational approach has been applied
to the study of business cycles, trade networks, market protocols, the formation
of firms and cities, and the diffusion of technological innovations. Computer pro-
grams are used to demonstrate constructively how those macro-level regularities
might arise from the bottom up through repeated local interactions of autonomous
agents. A methodological advantage of agent-based computational economics is
that it enables social scientists to do “laboratory experiments” to test a theory,
because computational models usually can be modified quite easily to study alter-
native socioeconomic structures and examine their effects on economic outcomes
(Tesfatsion, 2001).

Using poker chips on a checkerboard, Schelling (1971) simulates the dynam-
ics of racial housing segregation, which is generally recognized as the pioneering
application of this approach in the social sciences. In a ground-breaking work, Ep-
stein and Axtell (1996) investigate how social structures and group behaviors arise
from the interaction of individuals. With agent-based simulations, they show how
fundamental collective behaviors such as group formation, cultural transmission,
combat, and trade can emerge from the interaction of individual agents following
simple local rules. Axtell (1999) presents a model in which heterogeneous agents
form firms. Agents join firms or start new firms when it is advantageous for them
to do so. As firms grow, agents have less incentive to supply their efforts and tend
to become free riders, which causes large firms to decline. At the micro level, firms
grow and perish; at the aggregate level, the model produces data about firm sizes,
growth rates, and related aggregate regularities that parallel empirical findings.

Epstein (1999) characterizes the agent-based computational approach with the
following features: heterogeneous agents in terms of preferences, culture, social
networks, etc.; decentralized autonomous behavior of agents; explicitly defined
space; local interactions among agents; and bounded rationality. Because of these
features, agent-based modeling is particularly useful when the population is het-
erogenous, when interactions among agents are complex and nonlinear, and when
the space is crucial.

2.3 Industrial clusters

An industrial cluster is a geographic area in which many firms in an industry
are located and interact with each other through competition and cooperation.
Economists’ interest in industrial clusters traces back to Marshall (1920), but we
have seen a revival of this interest recently (see, e.g., Arthur, 1990; Krugman, 1991;
Porter, 1998). This line of research emphasizes the net benefits to firms located in
a cluster, which are determined by the benefits and the costs of agglomeration.
Sources of benefits include pooled labor forces, specialized suppliers, access to
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capital, proximity to customers, and knowledge spillovers, while diseconomies of
agglomeration stem from increased competition, congestion costs, and knowledge
expropriation. If positive net benefits are expected from an industrial cluster, new
entrants tend to arise, further enhancing the geographic concentration.

Those works that focus on net benefits from agglomeration treat clusters as
the result of firms’ locational choices. Yet it is not clear whether firm owners or
entrepreneurs engage in such searching and comparing exercises. Moreover, high-
tech start-ups might have concerns different from those of manufacturing firms.
Cooper and Folta (2000) point out that the primary determinant of a high-tech
start-up is the prior location of its founder. In fact, entrepreneurs seldom move
once they decide to start their new firms. This is understandable because, by staying
where they are, entrepreneurs can utilize their existing network to seek investors,
employees, customers, suppliers, and advisors; they can start on a part-time basis
and defer full commitment until the start-up becomes more promising; and they
may want their spouses to keep their current jobs. Given that entrepreneurs do
not move, one doubts whether they intentionally take advantage of the benefits of
geographic clusters.

Using data on U.S. manufacturing employment in the period of 1860-1987,
Kim (1995) shows that industry localization patterns are negatively correlated with
characteristics associated with external economies. In particular, high-tech sectors,
which are believed to have more positive externalities than other sectors, are less
agglomerated. This is inconsistent with the location choice literature.

Social scientists have long noticed that clusters, of individuals or firms, are the
result of two types of behavior. One is a sorting process. For example, individuals’
racial preferences could lead to housing segregation in which clusters of black or
white residents are formed. The other is a behavior-adapting process. For example,
smokers can convert their non-smoking friends into smokers, resulting in clusters
of smoking behaviors. The existing literature on industrial clusters has studied
the sorting process in which firms choose to locate close to other firms, but has
neglected the other process. We argue that entrepreneurship may be contagious and
that a person surrounded by entrepreneurs is more likely to start a firm himself.
This provides an alternative theory of the formation of industrial clusters.

2.4 The Schumpeterian entrepreneur

The “Irish banker in Paris,” Richard Cantillon, acknowledged by many historians as
the first great economic theorist, first recognized the important role of entrepreneurs
in economic life in the 18th century. The concept of the entrepreneur then appeared
in the writings of many French economists, including Quesnay, Turgot, and Say.
Yet within the British tradition, the dominant classical school made no distinction
between capitalists –who provide the means for investment in production – and
entrepreneurs – who explore possibilities of innovation, seek profitable opportu-
nities, and assume risks. Thus the followers of Smith and Ricardo excluded the
entrepreneur from economic analysis.

Today’s economists learn the theory of entrepreneurs mainly from Schumpeter
(1934). Schumpeter starts by describing the economic system as a circular flow
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within a Walrasian-like general equilibrium. To him, economic development is
driven by the activities of a class of entrepreneurs who take it upon themselves to
disrupt the circular flow by introducing new products, reorganizing labor forces
and capital, and rearranging the processes of business life in the hope of making
a profit from the disequilibria they create. To address the question of what drives
entrepreneurs to exercise their talents, Schumpeter might have given the most ro-
mantic reasoning in economics: he states that entrepreneurs choose their way of life
because of the dream and the will to found a private kingdom, the will to conquer,
the impulse to fight, to prove oneself superior to others, to succeed for the sake not
of the fruits of successes but of success itself, and finally the joy of creating, getting
things done, or simply of exercising one’s energy and ingenuity. Schumpeter uses
his concept of the entrepreneur to explain business cycles. The introduction of new
and untried products and processes causes “disturbances”; these disturbances that
appear “in groups or swarms” constitute business cycles. Entrepreneurial activities
appear in clusters because “the appearance of one or a few entrepreneurs facili-
tates the appearance of others, and those the appearance of more, in ever-increasing
numbers [Schumpeter’s italics]”.

Schumpeter’s theory of entrepreneurs has been renowned and influential. How-
ever, it is fair to say that its influence has remained outside of neoclassical eco-
nomics. Schumpeter’s entrepreneur is by definition an equilibrium-disturbing fig-
ure; his entrepreneurial activities constantly interrupt the tendency toward equilib-
rium in the economic system. Therefore, since neoclassical economics focuses on
equilibrium analysis, there is no room for Schumpeter’s entrepreneur. By contrast,
the Schumpeterian entrepreneur plays a crucial role in our model.

3 The model

Consider an N ×N lattice graph, ΛN = (V, E), with periodic boundary conditions.
V and E are the sets of vertexes and edges, respectively. Each vertex i ∈ V
represents an agent. An agent i is endowed with some human capital (technology)
hi.

At time 0, all agents are born and each agent’s endowment of human capital is
determined by a random draw: h0

i .
In each period of time, an agent with no firm has to make a decision as to

whether he wants to be an entrepreneur and start a firm. If he wants to do so at time
t, he will raise some money to buy capital Kt

i . If agent i has a firm, his production
function is

Y t
i = ht

i(K
t
i )

α, α < 1, (1)

otherwise, he produces nothing: Y t
i = 0. Capital is always obtainable at a fixed unit

cost c. For simplicity, we deal with the single-factor production and do not bother
with labor. This simplification may be understood in this way: each unit of capital
is attached with a certain amount of labor according to a fixed capital-labor ratio
and abundant labor is supplied at a constant price which is already included in c.
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Aggregate supply in this industry is

St =
∑

i

Y t
i . (2)

Aggregate demand Dt is given exogenously. Market price at time t is decided by

P t =
Dt

St
. (3)

If agent i produces, his profit is

πt
i = P tY t

i − cKt
i . (4)

Agents are boundedly rational; they act according to some rules of thumb. When
an agent makes some profit, he will put part of it into R&D and spend the rest
on capital accumulation. The R&D fund will be split again, with part of it being
spent on technological innovation and the remainder on technological imitation.
Each agent is born with two uniformly distributed random numbers γi, λi ∈ (0, 1),
which he takes as rules that govern his spending on technological innovation and
imitation. If agent i makes profit πt

i > 0, he puts aside γiπ
t
i for R&D. Among

that amount, λiγiπ
t
i goes to technological innovation. Let INi and IMi denote i’s

spendings on innovation and imitation, respectively. Then,
if πt

i > 0, then

IN t+1
i = IN t + λiγiπ

t
i ,

IM t+1
i = IM t + (1 − λi)γiπ

t
i ,

Kt+1
i = Kt(1 − d) + (1 − γi)πt

i ;

if πt
i ≤ 0, then

Kt+1
i = Kt(1 − d) + πt

i . (5)

Here d > 0 represents the rate of capital depreciation.
Technological innovation and imitation are costly. In addition, the larger a firm

is, the more costly it is to improve its technology. Whenever agent i’s spending on
innovation exceeds f(Ki), he gets a chance to draw a new hi from the distribution of
technological opportunities F (h, t). This distribution function is independent of i’s
current technology, but its mean increases with time. If the new draw is greater than
the old one, he will adopt the new one. Whenever agent i’s spending on imitation
exceeds g(Ki), he gets a chance to copy the best technology from neighboring
firms. It is more costly for large firms to upgrade technology, so f ′(·) > 0 and
g′(·) > 0. i’s neighboring firms are those started by surrounding agents:

Bi = {j|d(i, j) ≤ 2 and Kj > 0}, (6)
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where d(i, j) is the distance between i and j, which is defined as the number of
edges that constitute the shortest path between i and j. Therefore, the mechanism
of innovation and imitation can be summarized as follows:

If IN t
i ≥ f(Kt

i ), then ht+1
i = max{ht

i, h
′
i}, where h′

i ∼ F (h, t),
and IN t+1 = IN t

i − f(Kt
i );

if IM t
i ≥ g(Kt

i ), then ht+1
i = max{ht

i, max
i′∈Bi

ht
i′},

and IM t+1 = IM t
i − g(Kt

i ). (7)

If the firm simultaneously gets a random draw and a copy of the best technology in
the neighborhood, the better one is adopted.

In addition, entrepreneurs learn from failures. Each time an entrepreneur fails,
which means he keeps losing money and eventually does not have enough capital
to operate, he earns a chance ρ > 0 to copy the best technology from neighboring
firms. For the sake of parsimony, we use a single parameter, h, to represent technol-
ogy, which should be understood as a combination of both management skills and
production technology. A failed entrepreneur is likely to learn some management
skills from the practices of nearby successful entrepreneurs. Similarly, he will likely
recognize the better production technology used by neighboring entrepreneurs. This
opportunity for a failed entrepreneur to copy a better technology from surviving
firms may be interpreted as a chance for “zero-cost imitation.” In this sense, we
are assuming that imitation is easier for a re-starter than for an incumbent firm.
Previous studies have shown that incumbent firms are less likely to adopt radical
innovations because it is more costly for them to shift to a different technology
standard (Foster, 1986; Christensen, 1997). But a failed entrepreneur who starts up
a new firm faces no such costs.2

An agent’s decision on firm-founding reflects his perception of risk and his
evaluation of profitability. In turn, his attitude is affected by other agents in the
society. We assume that social distance is proportional to physical distance and an
agent’s behavior is largely influenced by close neighbors. If many of his neighbors
are entrepreneurs who make a lot of money, he will see the profitable opportunity
and also get a psychological boost from their success. Hence, he is likely to choose
to be an entrepreneur himself; otherwise, it is less likely that he will do so. A distant
successful entrepreneur has smaller effects on an agent’s decision. Specifically, the
probability that an agent chooses to start a firm is defined as follows:

Pr(Kt+1
i > 0 | Kt

i = 0) = φ(Kt
j1 , K

t
j2 , ...),

and
∂φ

∂Kt
j

≥ 0, ∀j �= i;
∂φ

∂Kt
jx

≥ ∂φ

∂Kt
jy

if d(i, jx) ≤ d(i, jy). (8)

For simplicity, we have assumed that a failed entrepreneur has no negative effect
on another agent’s decision. Casual observation of the real world helps justify

2 For example, it is quite easy for a fresh starter to imitate Amazon.com, but not that easy for a
conventional bookstore because its on-line service could hurt the position of its physical store. In this
sense, it costs less for a failed bookstore owner to imitate Amazon’s technology.
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this asymmetry between the social effects of success and failure. For example,
the limited liability corporation system creates an asymmetry between success and
failure: a successful entrepreneur is usually worth millions but a failed one almost
never loses much. Also, the media always gives more attention to successes than
to failures, which further magnifies the relative psychological impact of successes.
Research shows that even in the peak years of the Internet revolution, a large number
of high-tech firms went out of business in Silicon Valley (Zhang, 2003). However,
even the local media rarely covered such failures.

4 Agent-based simulation

Our dynamic model represents a complex Markov Process. To analyze it rigorously
is a formidable task. We will proceed with an agent-based simulation to learn the
properties of the model.

4.1 Parameterization of the model

One way to calibrate our model is to search for a set of parameter values, using
methods such as the Genetic Algorithm, so that the outcomes of the model replicate
some pre-selected empirical regularities. Since we will focus on the qualitative
properties of the model, such a sophisticated method seems unwarranted. Instead,
we take a simpler approach, that of picking a set of “reasonable” parameters through
a few trials on the computer program. As you will see, the model works fine. This
partly proves the robustness of our basic setup. The model is parameterized as
follows:

• N = 100. That is, we have a population of 10,000 agents.
• Technology ht

i is drawn in the way such that
√

ht
i follows U(0, 1 + t

2,500 ), a
uniform distribution on (0, 1 + t

2,500 ). That is,

F (h, t) =
(

2,500h

2,500 + t

)2

. (9)

This looks like a truncated normal distribution, which makes it difficult to attain
a very efficient technology. Over time, the distribution expands to the right. This
implies that a draw today is expected to yield a better technology than a draw
yesterday. Therefore, the investment in technology, just as with the investment
in capital, also depreciates.

• When agent i decides to start a firm, he simply takes money out of his savings
and acquires capital Ki = 5k, where k ∈ U(0, 1). We impose an arbitrary
minimum capital requirement such that, if Ki < 0.1, the firm has to be shut
down. The diminishing return to capital is captured by α = 0.995.

• Aggregate demand is given exogenously to replicate the evolution of an industry
that grows rapidly at an early stage and loses its momentum over time. We start



538 J. Zhang

with D0 = 10. Its growth rate is declining over the life cycle of the industry.
Specifically, we define

gt =




0.03 if Dt < 2, 000;
0.02 if 2, 000 ≤ Dt < 10, 000;
0.01 if 10, 000 ≤ Dt < 20, 000;
0.005 if Dt ≥ 20, 000.

(10)

We also define a cyclical parameter as bt = 1
100 sin

( 2πt
40

)
, which simulates

business cycles that span 40 periods (quarters).
In addition, we introduce random demand shocks in the form εt ∈ U(−0.01,

0.01).
The dynamics of aggregate demand follows

Dt+1 = Dt(1 + gt + bt + εt). (11)

• If agent i is not producing at time t, the probability that he will choose to do so
is

Pr(i starts a firm | Kt
i = 0) (12)

=
1
25

∑
j|d(i,j)=1

Kt
j

at
j

+
1
50

∑
j|d(i,j)=2

Kt
j

at
j

+
1

50, 000
,

where at
j is the age of firm j at time t. This says that i may choose to be an

entrepreneur independently with a low probability; if his neighbors accumulated
a great deal of capital in a short time, he is more likely to found a firm himself.
Notice that closer neighbors have larger effects on an agent’s choice and distant
entrepreneurs have no effects.

• Profitable firms spend money on R&D and try to improve their technology
through innovation and imitation. The parameters that affect the costs of R&D
activities are f(Ki) = 0.1(Ki)3 and g(Ki) = 0.3(Ki)3. The chance of learning
from failure is ρ = 0.1.

4.2 Main results

We start our simulation with a blank landscape with no firm. In this case, the
emergence of the first entrepreneur is a pure chance event. He may not be an agent
endowed with superior technology, but one thing is certain, he will make a large
profit for his entrepreneurial move. Once the first entrepreneur emerges on the
landscape, many of his neighbors will recognize the opportunity and follow suit; at
the same time, others may start firms by chance. Those firms that make profits will
upgrade their technologies. As more firms are founded and technology is improved,
the market price for the product decreases sharply. Many new firms are born around
profitable firms. Before long, one or more clusters form in certain regions. Some
firms are forced to exit because they cannot keep up with others in technological
progress, which may result from lower R&D expenditure or continuous unlucky
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Fig. 1. A snapshot of industrial clusters

draws from the distribution of technology. In the long run, we see a spatial pattern
of industrial clusters as shown in Figure 1.3 In Figure 1, a green cell represents a
small firm (Ki ≤ 10); a red cell represents a medium firm (10 < Ki ≤ 100); and
a blue cell is a large firm (Ki > 100). A cluster generally hosts firms of all types.

In this model, firms in a cluster do benefit from knowledge spillovers as they
imitate better technologies possessed by nearby firms. However, we see that en-
trepreneurs do not move and they do not intentionally seek the benefits from knowl-
edge spillovers. In fact, if it is cheap to improve the technology through independent
research, industrial clusters still tend to emerge even if we shut down the channels
for the inter-firm transmission of technology.

Figure 2 shows the dynamics of market price. When the first firm enters the
market, price is high. As capital is accumulated and production is expanded, market
price is driven down quickly. Competition through entry of new firms continuously
pushes the product price down to the cost of production. There is a cyclical pattern in
the price series, which reflects the cyclical movement we have built in the demand.

Figure 3 shows the firm size distribution. Large firms are rare; small and medium
firms dominate the industry. (Here we use output level to measure firm size. An
alternative measure, capital stock, gives similar qualitative results.)

Since Gibrat’s work in the early 1930s, it has been common practice to fit firm
sizes with lognormal distributions (Sutton, 1997). A standard justification for the
distribution is the so-called “law of proportional effect,” which postulates that firms
grow at random rates independent of firm size. This has now become well known
as “Gibrat’s law.” A lognormal distribution is skewed to the right, meaning that
firm sizes are concentrated on smaller values; in particular, the mean firm size is

3 Interested readers may want to try the simulation by themselves. A Java Applet is available from
the author upon request.



540 J. Zhang

Fig. 2. Price series

Fig. 3. Firm size distribution

larger than the median firm size, and both are larger than the modal firm size. By
definition, a lognormal distribution of firm size implies a normal distribution of log
firm size. Figure 3 roughly corresponds to a normal distribution.

The firm size distribution, especially its upper tail, has often been described by
the Pareto law (Ijiri and Simon, 1977; Axtell, 2001):

srβ = M , (13)

where s is the size of a firm, r is its rank in an industry (or an economy) with the
largest firm ranked 1, and β and M are constants. The power law implies a linear
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Fig. 4. Firm size-rank plot

relationship between log firm size and log firm rank:

log s = log M − β log r. (14)

Figure 4 plots firm size over firm rank. Cutting off the lower quartile of the sample,
we fit a straight line to the remaining data and obtain:

log(firm size) = 12.33 − 2.11 log(firm rank), R2 = 0.97.

(0.125) (0.028) (15)

It is almost a perfect fit. To compare this with reality, we do the same exercise for
the 211 U.S. high-tech firms on the list of Fortune 1000 largest firms. The firm
size-rank plot is presented in Figure 5. Since this data is already truncated from
below, we fit a straight line to the whole sample. The results are:

log(firm size) = 13.14 − 1.09 log(firm rank), R2 = 0.94.

(0.086) (0.019) (16)

We see that the real data also fits a straight line very well, although its slope is
smaller.

The curvature in Figure 4 corresponds to a feature that is repeatedly observed
in real data. Ijiri and Simon (1977) propose two possible interpretations for the
“departure” from the Pareto distribution: autocorrelation in firm growth rates and
the effects of mergers and acquisitions. Our model does not allow for mergers and
acquisitions, but we do have autocorrelated firm growth. Figure 5 only plots the
upper tail of the real data, which gives no indication as to how the lower tail behaves.
However, based on what we know, we are able to get a rough idea about the profile
of the complete sample. Assume the smallest high-tech firm has an annual revenue
of $0.01 million. By equation 16, we predict its rank is higher than 11.7 million.
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Fig. 5. Size-rank plot for fortune 1000 high-tech firms

Fig. 6. Firm size-age plot

That rank is even larger than the total number of U.S. firms.4 Therefore, the lower
end of the real data must bend down as do the simulated data.

By construction, a firm’s growth rate is related to its size in our model. In
particular, a small firm is assumed to be able to upgrade its technology more easily.
This is a violation of Gibrat’s law. However, our model is able to generate firm size
data that is qualitatively similar to empirical findings. It reminds us that Gibrat’s
law is only one of the parsimonious interpretations of empirical data.

4 According to the Census Bureau, the total number of U.S. establishments in 1999 was 7,008,444.



Growing Silicon Valley on a landscape 543

Figure 6 plots firm size over firm age. Interestingly, there is not a strong positive
correlation between firm size and age. In fact, the largest firms are all relatively
young. This is because once an old firm reaches a certain size, it slows down
in upgrading technology due to the high cost. But, remember, the distribution of
technology moves to the right. A newcomer draws technology from a better space,
and so it is more efficient and will outgrow older firms under the same market
condition. This reflects what happens in the high-tech sector in the real world. For
example, in Silicon Valley, more than half of the top 40 technology firms in 2002
were not even founded two decades ago; only four out of 40 largest firms in 2002
were survivors from the top-40 list in 1982 (Zhang, 2003).

The model also exhibits the following properties:

The first mover’s advantage

At the firm level, the first few entrepreneurs tend to make a lot of money and have
good chances to grow into large firms. However, their survival is not guaranteed.
Some late comers may be endowed with better technology that can drive the pioneers
out of the market; the first mover may follow a rule that spends very little profit on
R&D and eventually lags behind in the Schumpeterian competition; the first mover
may be so unlucky that his research efforts fail to generate superior technology
before his followers do. Therefore, the first mover does enjoy some advantage, but
only in a probabilistic sense.

At the economic region level, an area that enters the market early (with a few
firms already operating at the early stage) tends to capture a large piece of the
whole industry. In a variation of the model, we differentiate regions by assigning
to them different innovation spaces. In one region, firms search new technology in
(0, 1), but in another, firms are only allowed to innovate in (0, 0.99). We find that if
the disadvantaged region first occupies the market, its first mover’s advantage can
overcome the technological disadvantage and sustain the regional economy for a
long time. The reason is that firms in the disadvantaged region can innovate and
learn from each other and approach their potential quickly. They drive the product
price to a low level and leave a slim profit margin for new firms. Not all agents
in the advantaged region are endowed with superior technology. Even if an agent
has a very advanced technology to start with, he may make little profit, and an
economic downturn may drive him out of business. Although the bigger firms in
the disadvantaged region also lose money in the downturn, they will not go bankrupt
and will recover during the next upturn.

Path dependence

A region with many firms, on the one hand, will have more agents thinking of starting
up new firms, and on the other hand, will become more advanced in technology
because of R&D. This property of “increasing return” tends to lock the development
of the industry into certain regions. Once clusters are established, other regions have
little chance to catch up. In the real word, for example, it is very unlikely that other
regions can surpass Silicon Valley in the semiconductor industry.
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Clustering of entrepreneurship

Within the clusters, firms enter and exit the industry constantly. People in clusters
try new ideas and found new firms. They may not succeed the first time, but they
will try again and learn from their failures. This is the reason why a cluster differs
from other regions, has so many firms, and becomes so technologically advanced.
However, any snapshot of the industry tends to ignore the fact that cluster status is
achieved through continuous learning by trial and error.

Clustering of innovation

As entrepreneurship is clustered, innovative activities are also unevenly distributed
over the landscape. Firms in clusters spend a lot of money on R&D. They make
technological progress through both innovative research and imitation. In the long
run, almost all firms in clusters have mastered very advanced technology, which
leaves any firm outside clusters little chance of survival.

4.3 Location of clusters

The way we start our simulation implies that industrial clusters can emerge in any
area. However, it is particularly interesting to know what factors may determine
the location of clusters. To study that, we try simulations with different initial
conditions.

Technological advantage

Our simulation shows that a region that is quicker at finding, learning, and imitat-
ing better technologies (the distribution of technology is further to the right, and/or
lower values of f ′ and g′) is more likely to develop into an industrial cluster. In
reality, different regions do have different capacities in terms of research and inno-
vation. For example, California and Massachusetts together house 14.3 percent of
the U.S. population, yet 43.3 percent of the National Academy of Science members
and 34.6 percent of the National Academy of Engineering members are based in
these two states. Not surprisingly, California and Massachusetts lead the U.S. high-
tech economy. Universities, research institutes and labs have always been a major
source of technological advancement. The recent development of the biotech in-
dustry further proved the importance of academic research for a regional high-tech
economy. Almost all biotech firms either were founded by academic researchers
or received advice from them. At the same time, universities continuously provide
high-quality laborers to the high-tech sector. It is safe to say that high-quality re-
search universities are a necessary condition for a vibrant high-tech center, if not a
sufficient condition.
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Knowledge spillovers

Innovation such as superior technology is always first acquired by a lucky few. Other
firms have to keep up with the pace of innovation through imitation. We find that
regions in which firms may easily “copy” advanced technologies (smaller g′ and/or
imitation allowed for more distant firms) tend to develop into an industrial cluster.
In reality, a local culture that tolerates inter-firm knowledge and labor transfers
allows firms to learn collectively, which is favorable for the development of a
cluster (Saxenian, 1994). A legal infrastructure, such as the enforceability of “not
to compete” covenants, also has big effects on technology transfers (Gilson, 1999).
Thus the way we see knowledge spillovers is different from the way in which
the existing literature sees them. In our model, spillovers do benefit firms within
clusters, but do not attract firms into clusters, in contrast to what the new economic
geography literature suggests.

Seed capital and seed entrepreneurs

In a variation of our model, we assume that in some regions entrepreneurs have
difficulties raising capital. In such regions, when agent i decides to start a firm, he
acquires capital Ki = 2k instead of 5k as in other regions, where k ∈ U(0, 1).
Those capital-scarce regions are less likely to develop into industrial clusters. The
availability of capital is important for fostering entrepreneurs, which is well recog-
nized. Many scholars even suggest that local governments set up public funds to
provide “seed capital” to potential entrepreneurs when the objective is to develop
a high-tech regional economy.

In another variation of the model, we start by putting four “seed entrepreneurs”
in four different regions and see whether that brings substantial advantage to those
regions. Our simulation shows that, with a very high probability, one or more of
the four regions will grow up into industrial clusters. In a different way, this proves
first mover’s advantage and path dependence. On the other hand, it also shows the
importance of entrepreneurial leadership to a regional economy.

It is widely believed that the history of Silicon Valley traces back to the garage
where Hewlett and Packard started their business in Palo Alto. Another frequently
heard story is the departure of the “Traitorous Eight” from Shockley’s Semicon-
ductor Lab to found Fairchild. Those successes have inspired generations of en-
trepreneurs in the Valley. Almost every other high-tech center’s history began with
legendary entrepreneurs, who served as local heroes and role models who motivated
others to pursue success in the same way. Famous examples include Ken Olson in
Boston, Bill Gates in Seattle, and Robert Dell in Austin. It seems that the key to
replicating the Silicon Valley model is to incubate such a heroic entrepreneur. Pro-
viding seed capital is certainly an important part of that game, but it is not sufficient.
Although we know heroes in most cases spontaneously emerge, some local poli-
cies may facilitate their emergence. For example, local government may provide
training program for those scientists and engineers who consider starting their own
businesses. Favorable policies such as tax credits also help pioneers.
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Trying, and learning by failing

A high-tech industrial cluster, by definition, is characterized by many successful
firms. Our dynamic model allows us to see the other side of the story: clusters emerge
on failures. Most successes are achieved through constant learning by trial and error.
In fact, a region that does not tolerate failures (failed entrepreneurs not allowed to
start over again or do not learn from failures (ρ = 0)) has a slim chance of success.
Therefore, a cluster will most probably appear in a region where entrepreneurship
is encouraged and failed experiences are valued (Saxenian, 1994).

5 Concluding remarks

We have proposed a simplified Nelson-Winter model with an explicit space dimen-
sion to study the way in which high-tech clusters emerge on a landscape in which
no firm exists originally. We use agent-based simulation to show the dynamics of
the model.

Social scientists have long been interested in clustering behaviors, such as
racial housing segregation, the concentration of poverty and unemployment in cer-
tain neighborhoods, the exceedingly high crime rates in certain areas, the extreme
dropout rates in certain schools, etc. Mainly two types of explanations are raised
for clustering behaviors. One contends that clusters result from a sorting process
in which individuals alike choose to associate with one another; for example, the
residential segregation phenomenon can be explained in this way. The other argues
that peer effects cause individuals to conform to norms in a social group. Obviously,
the two arguments are not mutually exclusive. In many cases, including all other
examples mentioned above, the two arguments may work simultaneously. The ex-
isting literature on industrial clusters recognizes the sorting process in which firms
choose to locate close to other firms in order to exploit the benefits from a cluster.
However, it neglects the possibility that entrepreneurial spirit can spread among the
people in a region through social effects. We believe this kind of social contagion
story is close to the reality of high-tech industrial clusters that are characterized by
concentrated entrepreneurship. Our model shows that one does not have to invoke
the benefits of industrial clusters such as knowledge spillovers in order to explain
the formation of clusters; the contagion of entrepreneurship through peer effects
alone is able to account for the emergence of clusters.

Another point our model has highlighted is the importance of pioneering en-
trepreneurs for an emerging industrial cluster. Entrepreneurial life style is by defini-
tion creative and disruptive. It takes at least one charismatic, successful role model
to demonstrate the profits of taking risks and the joy of “changing the world” through
innovation. Such “seed entrepreneurs” that generate a swarm of followers locally
can be identified in every major high-tech industrial cluster in the United States.
We are aware that such pioneers are not picked beforehand; in fact, in most cases, it
seems as though those leaders had appeared by chance. However, we can certainly
increase the chance of seeing such leaders by creating a favorable environment for
entrepreneurial activities. Providing “seed capital” is one measure that may work,
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especially when entrepreneurs face binding financial constraints. Yet that is not
enough. Given that high-tech firms are often founded by scientists and engineers,
who do not necessarily have the impulse or knowledge to start as entrepreneurs,
policies that help convert those people into entrepreneurs are useful.

Despite the simplicity of our theoretical model, it is beyond our capability to
analyze it mathematically. For this reason, we resort to an agent-based simulation
to show the evolutionary dynamics of the model. We have built a prototype for
studying the emergence of high-tech industrial clusters. The primary advantage of
the simulation approach is that we are free to try many variations of the model. For
example, some authors have recently shown that large incumbent firms are likely
to spin off new businesses, which provide an alternative mechanism through which
industrial clusters emerge and grow (e.g., Klepper, 2001; Klepper and Sleeper, 2002;
Lazerson and Lorenzoni, 1999; Zhang, 2003).Although our model completely shuts
off the spin-off channel, one can easily modify our simulation to incorporate such
spin-off activities.5 Our model can also be modified to allow firms to move into or
out of clusters, to have more sophisticated agents, to introduce product innovation in
addition to new technology, or to test the consequences of different social network
structures. We leave these for future work.
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