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ABSTRACT. This paper presents a Schelling-type checkerboard model of residential segregation for-
mulated as a spatial game. It shows that although every agent prefers to live in a mixed-race neighbor-
hood, complete segregation is observed almost all of the time. A concept of tipping is rigorously defined,
which is crucial for understanding the dynamics of segregation. Complete segregation emerges and
persists in the checkerboard model precisely because tipping is less likely to occur to such residential
patterns. Agent-based simulations are used to illustrate how an integrated residential area is tipped
into complete segregation and why this process is irreversible. This model incorporates insights from
Schelling’s two classical models of segregation (the checkerboard model and the neighborhood tipping
model) and puts them on a rigorous footing. It helps us better understand the persistence of residential
segregation in urban America.

1. INTRODUCTION

For three decades, survey data have consistently shown that African Americans
prefer to live in integrated neighborhoods with half blacks or a slight black majority.1

For example, in 1982, the General Social Surveys asked black respondents about their
most preferred neighborhood racial composition and found that 61.6 percent of them
picked “half black, half white” as the top choice (Davis and Smith, 1993). Data collected
in a Multi-City Study of Urban Inequality (MCSUI) during the 1990s also showed that
50 percent of black interviewees chose a 50–50 neighborhood as the most attractive and
99 percent of them indicated a willingness to move into such neighborhoods (Krysan and
Farley, 2002).

Survey results also demonstrated that whites, although generally less enthusiastic
about 50–50 type neighborhoods than blacks, have increasingly endorsed the idea of
residential integration (Schuman et al., 1997). The same MCSUI data indicated that
60 percent of whites felt comfortable with neighborhoods with one-third blacks and that
45 percent of whites were willing to move into such neighborhoods (Charles, 2003).

These stated preferences are in stark contrast with the high levels of racial housing
segregation in reality. Using the 1990 Census data, Massey and Denton (1993) find that
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residential segregation between blacks and whites remains a striking feature of many
U.S. metropolitan areas, a situation they describe as the “American apartheid.” According
to the same Census data, very few blacks actually live in “half black, half white” neigh-
borhoods, in contrast to the survey results cited above (Zhang, 2004a).2 The latest 2000
Census data show only modest steps toward integration (see, e.g., Glaeser and Vigdor,
2001; Logan et al., 2004).3

This persistence of residential segregation in urban America is generally considered
a social problem because it has adverse effects, especially on blacks. Kain (1968) has
long argued that residential segregation leads to a “spatial mismatch” between blacks
and their potential employers that diminishes blacks’ employment opportunities. Wilson
(1987) echoes this point in a highly influential study of the “truly disadvantaged” inner
city underclass in America. Massey and Denton (1993) argue that segregation is at the
root of many problems facing blacks. Numerous studies have since documented that resi-
dential segregation is associated with negative outcomes for blacks in terms of academic
performance, educational attainment, employment, single parenthood, poverty, criminal
behaviors, and even health outcomes (see, e.g., Galster, 1987; Orfield and Eaton, 1996;
Shihadeh and Flynn, 1996; Cutler and Glaeser, 1997; Williams and Collins, 2001; Card
and Rothstein, 2007).

There are three primary explanations for the persistence of segregation. The first
is derived from a long-standing hypothesis that physical distance between racial groups
reflects their social distance. This explanation holds that segregation persists because
lower-income blacks cannot afford to move to white neighborhoods although they would
like to (Marshall and Jiobu, 1975; Cloutier, 1982; Clark and Ware, 1997; Iceland and
Wilkes, 2006).4 The second explanation emphasizes various forms of racial discrimina-
tion in the housing market. It argues that discriminatory behaviors of real estate agents,
mortgage lenders, and insurance providers prevent blacks from moving into their most
preferred neighborhoods (see, e.g., Yinger, 1986, 1995; Goering and Wienk, 1996). The
third explanation points to the fact that whites have less favorable feelings toward inte-
grated neighborhoods than blacks. It contends that there are not enough whites willing
to reside in neighborhoods with 50 percent or more blacks (Emerson et al., 2001; Krysan
and Farley, 2002; Vigdor, 2003).5 Given these explanations for the persistence of segre-
gation, one naturally expects that residential integration will occur as long as socioeco-
nomic inequalities between blacks and whites continue to narrow, whites’ attitudes toward

2For example, only 2.91 percent of blacks in Chicago, 2.97 percent in Cleveland, and 2.56 percent
in Detroit live in “half black, half white” neighborhoods, which Zhang (2004a) broadly defines as any
neighborhood with 40–60 percent blacks.

3In terms of long-term trend, the absolute degree of residential segregation peaked in 1970 and
has been declining since (Cutler et al., 1999; Glaeser and Vigdor, 2001). However, the decline is too small
relative to the dramatic change in racial attitudes, federal housing policy, and the socioeconomic status
of blacks. The inconsistency between the small steps toward integration and the widely expressed racial
tolerance is particularly puzzling. As Farley and Frey (1994) observed, there is “a gap between attitude
and behavior.”

4This hypothesis has always been challenged because empirical evidence has consistently shown
that high levels of segregation exist in every socioeconomic group (see, e.g., Taeuber, 1968; Farley, 1995;
Darden and Kamel, 2000; and Zhang, 2003). Bayer et al. (2004) find that socioeconomic factors explain
only a small proportion of the segregation of blacks although they can explain a large proportion of the
segregation of Hispanics.

5These three explanations are not necessarily mutually exclusive. For example, Sethi and So-
manathan (2004) explain residential segregation based on a preference over both neighborhood affluence
and its racial composition. Their model suggests that under certain conditions a narrowing racial income
gap may increase rather than decrease the levels of segregation.
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integrated neighborhoods continue to become more favorable, and antidiscrimination laws
are more stringently enforced.6

In this paper, I show that the prospect of residential integration may be bleaker
than what is generally perceived. I present a rigorous model that incorporates important
insights from Thomas Schelling’s two models of segregation (Schelling, 1969, 1971, 1972,
and 1978). I will show that residential segregation could emerge and persist even if the
following three conditions hold simultaneously: (1) There exists no racial discrimination
of any type; (2) both blacks and whites prefer to live in 50–50 neighborhoods; and (3) the
socioeconomic disparities between blacks and whites are completely eliminated.

This paper makes two contributions. First, it offers an explanation for the persistence
of residential segregation in U.S. metropolitan areas observed in the past two decades.
Existing studies on the persistence of segregation generally assume that if integration
is a preferred outcome, then segregation could persist only if some frictions prevent the
transition to integration. This is why many researchers consider racial discrimination and
income disparities as possible reasons for the persistence of segregation (Dawkins, 2004).
Deviating from this literature, this paper emphasizes that racial integration, even if highly
desirable at the individual level, may not be attainable because integrated residential
patterns are inherently unstable. This idea is well known because of Schelling’s pioneering
studies and follow-up work, but it has not been a focus of recent research on the persistence
of segregation.

Second, this paper formalizes Schelling’s idea of tipping and uses it to rigorously
demonstrate why residential segregation may emerge and persist despite the preference
for integration at the individual level. Schelling originally developed the idea of tipping
to study segregation dynamics in a single neighborhood and the concept has always been
discussed in the context of a single neighborhood. Schelling also showed, in a multi-
neighborhood setting, that residential patterns may not reflect individual preferences. By
introducing the idea of tipping into a multineighborhood model, this paper incorporates
the insights from Schelling’s separate models into a unified framework. Unlike Schelling’s
inductive and less formal approach, this paper presents a rigorous model and analyzes
it using techniques from mathematical game theory, which helps sharpen many of the
important insights developed by Schelling.

The remainder of the paper is organized as follows. Section 2 reviews Schelling’s
two dynamic models of segregation. Section 3 presents a unified Schelling model that
combines the insights from both of his models. Section 4 uses agent-based simulations
to illustrate the analytical results of the unified model. Section 5 concludes with some
remarks.

2. SCHELLING’S MODELS OF SEGREGATION

In a series of publications, Schelling (1969, 1971, 1972, and 1978) presents two dis-
tinct models of residential segregation between blacks and whites: the spatial proximity
model and the bounded-neighborhood model.7 Each model provides great insights into

6In fact, there is evidence for the changing attitudes of whites. Survey data show that more and
more whites tend to agree with the principle that blacks should be able to live wherever they can afford
and that more and more whites tend to approve open-housing laws (Schuman et al., 1997; Bobo, 2001).
Time-series data from the Detroit area also show that whites are more and more willing to remain in their
neighborhoods as blacks enter (Farley et al., 1994). This change in attitudes alone could lead to a decline
in racial discrimination. Ross and Turner (2005) find that indeed discriminatory behaviors have become
less pervasive in U.S. housing markets.

7Schelling (1972) focuses on the bounded-neighborhood model only and calls it the “neighborhood
tipping” model. Each of the other works covers both models.
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the causes and the persistence of racial housing segregation. Both are well known and
highly influential among social scientists far beyond the research area of segregation.

The spatial proximity model is a simulation of the dynamics of segregation. It starts
with a residential area (a line or a grid) populated by a fixed number of black and white
agents, each having a preference over the racial composition of her immediate neighbor-
hood. Agents dissatisfied with their current residential locations are allowed to move into
their preferred neighborhoods in a random order. The simulation stops when no agent is
found to be discontent. Schelling’s most striking finding is that moderate preferences for
same-color neighbors at the individual level can be amplified into complete residential
segregation at the macro level. For example, if every agent requires at least half of her
neighbors to be of the same color—a preference far from extreme—the final outcome,
after a series of moves, is almost always complete segregation. Thus Schelling concluded
that the “macrobehavior” in a society may not reflect the “micromotives” of its individual
members.

The spatial proximity model has every ingredient of a great theoretical work: it
addresses an important real world issue; it is simple to understand; it produces unex-
pected results; and it has deep implications for various social sciences. In addition, the
model also has the appealing feature that any reader can come up with a variation of
its two-dimensional version and simulate it, for example, by moving dimes and pennies
on a checkerboard. This model has since become widely known as Schelling’s “checker-
board model.” Because of this work, many researchers today consider Schelling to be a
pioneer in agent-based computational economics (Epstein and Axtell, 1996, p. 3). The
model’s numerous variations and the robustness of its main result have been a popu-
lar topic in the area of agent-based modeling (see, e.g., Epstein and Axtell, 1996; Bruch
and Mare, 2006; Fossett, 2006; Fagiolo et al., 2007; Pancs and Vriend, 2007; O’Sullivan,
2008).

Despite the important insight revealed in Schelling’s simulation of the checkerboard
model, for many years social scientists were unable to rigorously analyze the model, pri-
marily because of the lack of suitable mathematical tools. Young (1998) was the first to
point out that techniques recently developed in evolutionary game theory—particularly
the concept of stochastic stability introduced by Foster and Young (1990)—are useful for
analyzing Schelling’s spatial proximity model. Young (1998, 2001) presents a simple vari-
ation of the one-dimensional Schelling model (on a ring). He shows that segregation tends
to appear in the long run even though a segregated neighborhood is not preferred by any
agent.8 Pancs and Vriend (2007) derive similar results showing that complete segregation
is the only possible long-run outcome on a ring when agents with a preference for 50–50
neighborhoods play best response to neighborhood racial composition.9 Formulating the
checkerboard model as a spatial game played on a two-dimensional lattice graph, Zhang
(2004a) shows that even if everybody prefers to live in a 50–50 mixed-race neighborhood,
complete segregation emerges and persists in the long run under fairly general conditions.
All of these results are even stronger than those Schelling showed in his original model.
In another paper, Zhang (2004b) enriches the checkerboard model by adding a simple
housing market. It not only offers an alternative account of residential segregation, but
also produces testable hypotheses on housing price and vacancy differentials between
predominantly black and predominantly white neighborhoods. These studies all seek to
reformulate Schelling’s checkerboard model in a game-theoretic framework and place it

8Bog (2006) assesses the robustness of the results from Young’s one-dimensional model.
9This analytical result in Pancs and Vriend (2007) cannot be extended to a two-dimensional setting,

but using simulations they show that best-response dynamics tend to produce segregation even in a
two-dimensional space.
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on a rigorous footing. The goal is to apply standard results in game theory to gain a better
understanding of the insights illustrated in Schelling’s checkerboard model.

Schelling’s second model of residential segregation, the “bounded-neighborhood
model,” is better known as the neighborhood tipping model.10 Unlike the checkerboard
model, which is a simulation, the tipping model is purely analytical. It seeks to explain
the phenomenon of neighborhood tipping. Tipping is said to have occurred when an all-
white neighborhood, after some blacks move in, suddenly begins the process of evolving
into an all-black neighborhood with more and more whites moving out and only blacks
moving in. This process of tipping, once started, often appears to be accelerating and
irreversible. Schelling’s explanation is based on the assumption that different residents
in a neighborhood have different tolerance levels toward the presence of neighbors of the
opposite color. For example, in an all-white neighborhood, some residents may be will-
ing to tolerate a maximum of 5 percent black neighbors; others may tolerate 10 percent,
20 percent, and so on. The ones with the lowest tolerance level will move out if the pro-
portion of black residents exceeds 5 percent. If only blacks move in to fill the vacancies
after the whites move out, then the proportion of blacks in the neighborhood may reach a
level high enough to trigger the move-out of the next group of whites who are only slightly
more tolerant than the early movers. This process may continue and eventually result in
an all-black neighborhood.

Similarly, an all-black neighborhood may be tipped into an all-white neighborhood,
and a mixed-race neighborhood can be tipped into a highly segregated one, depending
on the tolerance levels of individuals in each racial group. In a more general sense, as
Schelling points out, tipping refers to a process where “something disturbs the origi-
nal equilibrium” (Schelling, 1971, p. 182). Most interestingly, this “something” may not
be “big” in any sense. It is sufficient to tip the system as long as it starts a chain re-
action that moves the system further and further away from the original equilibrium
situation.11

The tipping model has also generated a great deal of interest. Some researchers
add a housing market into the model so that neighborhood choices are based on prices
instead of preferences as in the original model (Schnare and MacRae, 1978; Becker and
Murphy, 2000, Chapter 5). Others try to empirically detect the tipping phenomenon in the
transition of racial composition of neighborhoods (Goering, 1978; Clark, 1991; Easterly,
2005; Card et al., 2008a, 2008b). In sociology, the tipping idea has been applied to study
many other social phenomena and inspired considerable theoretical work on “threshold
behaviors” and critical mass models (see, e.g., Granovetter, 1978; Granovetter and Soong,
1983, 1988; Crane, 1991). In economics, there has been some attempt to analyze the
tipping phenomenon in a more rigorous setting. Anas (1980) proposes a formal model that
explains neighborhood tipping on purely economic grounds without assuming prejudicial

10Schelling has two versions of the tipping model. The first version is most thoroughly analyzed in
a section of Schelling (1971), in which he refers to it as the “bounded-neighborhood model.” A preview of
this model appears in Schelling (1969) and an abridged version is included in Schelling (1978, Chapter 4).
The second version of the tipping model is presented in Schelling (1972), focusing solely on the process of
neighborhood tipping. Schelling’s diagrammatic treatment of the neighborhood tipping process is slightly
different in these two versions of the model, although the central idea is the same.

11The concept of tipping has since been widely used by game theorists to refer to the idea that “a small
change in the state of a system can cause a large jump in its equilibrium” (Heal and Kunreuther, 2006,
p. 1). The tipping idea has even found its way into the popular culture. Most notably, in a national bestseller,
Gladwell (2000) brilliantly explores and illustrates the tipping phenomenon using everyday examples. He
very accurately summarizes the three characteristics of tipping dynamics as: (1) individual behaviors
are interdependent (contagious); (2) accumulation of small changes has significant consequences; and (3)
dynamics accelerate once a threshold is reached (Gladwell, 2000, pp. 7–9).

C© 2010, Wiley Periodicals, Inc.



172 JOURNAL OF REGIONAL SCIENCE, VOL. 51, NO. 1, 2011

preferences as Schelling did. Mobius (2000) and Dokumaci and Sandholm (2006) follow
Schelling more closely and seek to reformulate Schelling’s tipping model in a game-
theoretic framework.12

One important aspect of Schelling’s original tipping model is that the events or activ-
ities triggering the tipping process are assumed to be exogenous and thus not generated
within the model. In his own words, the initial in-migration of some blacks that tips an
all-white neighborhood could be “concerted entry, erroneous entry by a few, organized in-
troduction of a few, redefinition of the neighborhood boundary so that some who were not
inside become ‘inside,’ or something of the sort” (Schelling, 1971, p. 182). Because tipping
in this model has to be started by some outside events, Mobius (2000) argues that “the
basic tipping model suggests no mechanism for moving between an all-white equilibrium
and a ghetto equilibrium. The theory can therefore explain the persistence but not the
formation of ghettos.” He consequently extends the tipping model by introducing local in-
teraction among residents within the neighborhood that gives an endogenous mechanism
of tipping.

Schelling originally presented the checkerboard model and the tipping model inde-
pendently. Aside from their common subject matter, they are related only in the sense
that both models help illustrate the deviation of macro behavior from micro motives.
As already mentioned above, they have distinct formats: one as a simulation and the
other as a purely analytical model. The key insight of the checkerboard model—moderate
preference for same-color neighbors may lead to complete segregation—is not shown in
the tipping model, and the concept of tipping—seemingly unimportant events trigger the
movement of a system from one equilibrium to another—is not introduced in the checker-
board model. The tipping model deals with a single neighborhood. It is thus a partial
equilibrium model in that although agents (black or white) are assumed to move into and
out of the neighborhood, the model does not specify where they come from or where they
go. In contrast, the checkerboard model consists of many neighborhoods and has a general
equilibrium flavor in that agents only move inside the model and their moves generate
residential segregation endogenously.13

These differences between Schelling’s checkerboard model and his tipping model have
caused research following these two models to develop along different paths that have not
overlapped. Similar to Schelling’s simulation with dimes and pennies on a checkerboard,
the literature extending his checkerboard model is largely informal, using computer sim-
ulation as the primary research tool. The main advantage of this approach lies in the ease
of investigating any conceivable variations of the original model. As a consequence, there
are now many versions of the checkerboard model, most of which are more complicated
than Schelling’s original model. However, the simulation approach also has its disad-
vantages. Because different simulations are usually written in different programming
languages and run on different platforms, simulation models are almost never directly
built on earlier work and therefore existing results are only loosely related. In addition,
results derived from simulations are less transparent in that it is not always clear which
result is driven by which assumptions. These problems can be overcome by developing
a mathematical framework to rigorously analyze the checkerboard model. Young (1998)
and Zhang (2004a, 2004b) are the early attempts in this direction. This paper is along the
same line of research.

12See also Bowles (2003, Chapter 2) for a variation of the bounded-neighborhood model that is used
to demonstrate the emergence of “spontaneous order.”

13The two models also have different neighborhood definitions. In the checkerboard model, neigh-
borhoods are defined with reference to each agent’s residential location. The tipping model focuses on a
single neighborhood that has fixed boundaries; an agent is either inside it or outside it.
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The literature inspired by Schelling’s tipping model has been more rigorous. A large
fraction of the work in this tradition only borrows Schelling’s idea of tipping to study
other social phenomena rather than residential segregation. The studies that examine
the dynamics of segregation, like Schelling’s original tipping model, always focus on a
single neighborhood (e.g., Mobius 2000; Dokumaci and Sandholm 2006). However, segre-
gation occurs at the city level and most of the features and consequences of residential
segregation have to be understood at the city level. Therefore, in many cases, the multi-
neighborhood setting of the checkerboard model is the more appropriate level of analysis
than the single-neighborhood setting of the tipping model. This paper represents the first
attempt to take the tipping idea developed in a single-neighborhood model and build it
into a checkerboard model that can be used to analyze segregation dynamics in a multi-
neighborhood area.

I will present a Schelling-type checkerboard model that has the following features:
First, it is formulated mathematically as a spatial game and thus can be rigorously
analyzed. Second, the concept of tipping is rigorously defined and the trigger of the tipping
process is endogenized into the checkerboard model. Third, the tipping of equilibria is
crucial for understanding the dynamics of segregation in the checkerboard model. Fourth,
the model helps us understand the persistence of segregation in U.S. metro areas.

3. A UNIFIED SCHELLING MODEL

Basic Setup

This model builds on a Schelling-type checkerboard model first proposed by Zhang
(2004a). Zhang studies the model’s long-term dynamics, both analytically and compu-
tationally, without introducing the concept of tipping. I will demonstrate here that this
model can be extended to incorporate Schelling’s insights on neighborhood tipping. To
simplify the analysis, I deviate from Schelling’s original setup by not leaving vacant lo-
cations in the residential area. Following Young (1998), I allow individuals to move by
switching residential locations. It is as if there exists a centralized agency that processes
all the information about who wants to move and which two agents may want to switch.

Consider an N × N lattice graph embedded on a torus, where N is an integer, as
the residential area of a city. There is a house at each vertex of the graph. Houses are
identical in every respect except that some are occupied by black agents and others by
white agents. The proportion of blacks in the population is fixed and it has no bearing on
the results of the model. A neighborhood is defined locally in the way Schelling did. In
particular, an agent takes 2n agents around her as her neighbors, where n is an integer
much smaller than N.

Each agent has a payoff function indicating how much she is willing to pay for
a residential location in a particular neighborhood. The payoff function is specified as
follows:

�i = �u(si) + εi .(1)

An agent i’s payoff �i has two parts. The first part contains a deterministic term u
that denotes i’s utility derived from living in a particular neighborhood. This utility
is a function of si, the number of same-color neighbors agent i has. The second part
εi is a random term. It is assumed to be independent both across agents and across
residential locations. Following the evolutionary game theory literature, one could think of
this random term as a result of bounded rationality. For example, one may assume that the
agent either does not have precise information about the neighborhood racial composition,
or is incapable of correctly calculating her payoff, or act impulsively when deciding how
much a residential location is worth. Alternatively, one could also interpret the random
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FIGURE 1: An Agent’s Utility As a Function of Neighborhood Racial Composition.

term as a combination of nonracial characteristics of the neighborhood that residents care
about but are unobservable to the modeler. For example, such characteristics may include
crime rate, school quality, and proximity to workplace or natural amenities. For the ease
of exposition, I will follow the bounded-rationality interpretation in the rest of the paper
and analyze the model as if neighborhood racial composition is the only source of utility.
However, it should be noted here that either interpretation gives the same set of results.

The parameter � in the payoff function is a positive constant that determines the
relative importance of the random term. If � is close to zero, the random term is relatively
important and largely determines how much the agent is willing to pay for a particular
residential location. As a result, neighborhood racial composition plays a minor role when
an agent decides where to reside. If � approaches infinity, the random term becomes
unimportant and only neighborhood racial composition matters in an agent’s decision.
Throughout the paper, I consider the cases with a large �. It is assumed that every agent
has the same � and the same utility function u.

Assume that every agent prefers to live in an integrated neighborhood. More specifi-
cally, every agent attains the highest level of utility when living in a half-black-half-white
neighborhood. However, if such evenly mixed neighborhoods are not available, they feel
better if they belong to the majority group rather than the minority group. That is, for
a white agent, a 30–70 black-white ratio is better than a 70–30 black-white ratio; the
opposite is true for a black agent. Survey data suggest that this is a plausible assump-
tion. For example, a recent multicity study shows that individuals from all racial groups
prefer highly integrated neighborhoods, but at the same time they do have a bias in favor
of own-group members (Charles, 2001, 2003; Krysan and Farley, 2002). Various reasons
could explain the inclination toward one’s own race, including cultural concerns, fear of
potential hostility from the other group, or dislike of isolation.

To be more specific, I assume that an agent has a single-peaked utility function,
depicted in Figure 1. Utility attains its maximum at n, which is half of the total number
of neighbors. On the left side of n, the function is linearly increasing; on the right side of n,
it is linearly decreasing. It is relatively steeper on the left side, reflecting the assumption
that agents would rather belong to the majority group instead of the minority group when
half-half mixed neighborhoods are unavailable. Linearity is assumed only for simplicity.
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Letting si be the number of same-color neighbors agent i has, the utility function can be
written as

u(si) =

⎧⎪⎪⎨
⎪⎪⎩

Zsi

n
, si ≤ n

(2Z − M) + (M − Z)si

n
, si > n

Z > M > 0,(2)

where Z is the maximum value of u and M is the value of u when the agent has all
neighbors like herself. Because the utility of having no same-color neighbors is normalized
to zero, M indicates the difference between living with all same-color neighbors and no
same-color neighbors.

Agents may exchange residential locations. In each period of time, a pair of agents
is randomly chosen from two different neighborhoods. The chosen agents are allowed
to consider switching residential locations according to their own payoffs. Agents will al-
ways trade residential locations when a switch is Pareto-improving (i.e., increases the two
agents’ total payoffs). In some cases, both agents have higher payoffs after a switch. In
other cases, a switch will lower one agent’s payoff, but it will be carried out as long as the
other agent’s gain is enough to compensate the loss. I am therefore assuming that if nec-
essary the two agents can always costlessly negotiate a proper side-payment to make the
trade mutually beneficial. This assumption allows me to focus on the sum of the two cho-
sen agents’ payoffs because they always attempt to maximize the sum by a joint decision.

If the two agents choose to switch residential locations, the sum of their payoffs after
the switch is

�i(· | switch) + � j(· | switch) = [�u(si | switch) + εi] + [�u(sj |switch) + ε j]

= �[u(si | switch) + u(sj | switch)] + [εi + ε j]

= �U + �,

where U = u(si|switch) + u(sj|switch) and � = εi + εj. Similarly, if the two agents do not
switch residential locations, the sum of their payoffs is

�i(· | not switch) + � j(· | not switch) = [�u(si | not switch) + ε′
i] + [�u(sj | not switch) + ε′

j]
= �[u(si | not switch) + u(sj | not switch)] + [ε′

i + ε′
j]

= �V + �,

where V = u(si|not switch) + u(sj|not switch) and � = εi
′ + εj

′.
A switch will happen if and only if it yields higher total payoffs, that is, �U + �> �V +

�. Following McFadden (1973), I assume that � and � are independent and identically
follow an extreme value distribution. It is then well known that one can integrate out the
random terms of the total payoffs to obtain the probability of switching as

Pr(switch) = e�U

e�U + e�V
.(3)

This switch rule is known as a log-linear behavioral rule, which is commonly assumed
in the literature (see, e.g., Blume, 1997; Young, 1998; Brock and Durlauf, 2001). It implies
that if a switch increases the agents’ utilities, they are more likely to do it. Note that even
if a switch decreases these two agents’ utilities, it is still possible that they will do it. The
possibility of such a “mistake” depends on �.14 A large � implies that “mistakes” are rarely

14For expositional purpose, from this point on, I will refer to any move that lowers the two agents’
utilities (derived from their racial preferences only) as a “mistake.” But note that a “mistake” does not have
to be a real mistake if one interprets the random term in an agent’s payoff function as random utilities.
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made. In particular, as � approaches infinity, the probability of a switch approaches zero
if the switch results in lower utilities. In that case, the model reduces to a standard game-
theoretic model with agents playing best reply to their environments. Random payoffs are
unobservable. Thus, it is very convenient to integrate them out and analyze the model by
working with this behavioral rule.

Define a state x as an N2 vector, each element labeling a vertex of the N × N
lattice graph with the color of its occupant. Thus each x represents a specific residential
pattern. Let xt be the state at time t, which gives a finite Markov process under the switch
rule described in Equation (3). Let P� denote the Markov process (i.e., its transition
probability matrix). I call P� a perturbed process because agents do not always make
“correct” (utility-increasing) decisions depending on the value of �. Small values of �
imply large perturbations; the perturbation vanishes as � approaches infinity.

Let X be the set of all possible states of the Markov process. Given a large N, there are
a large number of states in X, implying a large number of possible residential patterns.
To proceed, I will simplify the analysis by focusing on a single statistic of each residential
pattern specified as follows. Given any state, let ED be the set of all unordered black-white
agent pairs who are neighbors

ED = {(i, j) | agents i and j are neighbors and have different colors}.
A function � : X → N is then defined as the cardinality of the set ED: � = |ED|.

For any state xt, � (xt) gives the total number of pairs of unlike neighbors. In this model,
the value of � (after being properly normalized) serves as a natural index of segregation.
It measures the degree of exposure (or potential contact) between the members of the two
races; it indicates the extent to which blacks and whites physically confront one another
by virtue of sharing a common residential area. A lower � means a higher degree of
segregation.15

The function � also has an attractive property; its first difference is proportional to
the changes in the moving agents’ utilities. This is summarized as the following lemma:16

LEMMA 1: For any two agents i and j in two different neighborhoods, the following relation
always holds:

� (· | switch) − � (· | not switch)

= −�{[u(si | switch) + u(sj | switch)] − [u(si | not switch) + u(sj | not switch)]},
(4)

where � = 2n/M > 0 is a constant.

Equation (4) states that if two agents obtain higher utilities by switching residential
locations, their action lowers the value of function � by an amount proportional to the
increase of their utilities. Following the game theory literature, from this point on, I will
refer to � as the potential function of the spatial game.17

Given that a smaller � implies a higher degree of segregation, Equation (4) suggests
that utility-increasing switches will move the whole system toward segregation. In other
words, a mutually beneficial trade of residential locations may have a negative effect on
social welfare (sum of all agents’ utilities). The reason is that the switch of residential

15In empirical analysis, researchers have developed many indices to measure residential segrega-
tion. See Massey and Denton (1988) for a detailed discussion.

16A sketch of the proof of this lemma is given by Zhang (2004a). A complete proof is included in an
Appendix of the working paper version of this paper (Zhang, 2009), which is available upon request.

17Equation (4) makes this spatial game a potential game. A game is a potential game if the changes
in players’ payoffs can be characterized by the first difference of a function. The function is then called the
potential function of the game (Monderer and Shapley, 1996).
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FIGURE 2: Moore Neighborhood.

locations causes negative externalities. When agents move, they affect the racial compo-
sition of both the neighborhoods they leave behind and the neighborhoods they move into.
However, they do not take into account such externalities when they decide whether to
move. As it will become clear below, Equation (4) is crucial for analyzing the dynamics of
segregation in this model.

Tipping

Consider the limiting situation of the Markov process P∞, that is, � = ∞. Remember
that an infinitely large � implies that agents trade residential locations if and only if such
moves increase their utilities (the deterministic terms of their total payoffs). I will refer
to this process as the unperturbed process because it is equivalent to setting the random
term in an agent’s payoff function to be zero. Define an equilibrium state as one in which
there does not exist a pair of agents who can increase their utilities by trading residential
locations. An equilibrium is thus an absorbing state of the unperturbed process because
once the system is in it, it will never escape.

It is more convenient to discuss equilibrium states under a specific definition of a
neighborhood. From now on, I use the definition of the “Moore neighborhood” in which
every agent on the lattice graph considers the eight surrounding agents as neighbors
(see Figure 2). Under this definition, a checkerboard residential pattern (each edge of the
lattice graph connects a black agent with a white agent) is an equilibrium state. In this
case, each agent has exactly four same-color neighbors out of a total of eight neighbors,
which gives the highest possible utility level. Therefore, trading residential locations will
not increase any agent’s utility and no one has incentive to do it.

In addition to the checkerboard pattern, there exist a large number of equilibria (see
Figure 3). For example, a residential pattern with alternating black and white stripes is
also an equilibrium state. If a stripe consists of two rows of blacks or whites (panel (b) of
Figure 3), a typical agent has five same-color neighbors out of a total of eight. Clearly, no
agent is living in a half-half mixed neighborhood and nobody attains the highest level of
utility. Nonetheless, it is impossible for any pair of agents to switch residential locations
to improve their utilities. The same is true if each stripe consists of more rows of blacks
or whites (panel (c) of Figure 3). The most extreme case is a residential pattern in which
there is only one stripe of blacks and one stripe of whites (panel (d) of Figure 3). In this
case, one observes a complete segregation. But the system is still in equilibrium because
no pair of agents can improve their situation by switching residential locations. Therefore,
the system has multiple equilibria under the unperturbed process and different equilibria
may be associated with different levels of social welfare.

Now come back to the perturbed system that is subject to constant shocks in the
form of utility-decreasing moves, that is, � is finite and large. Under this assump-
tion, an equilibrium state as defined above is no longer an absorbing state. Although
in an equilibrium state nobody gains utility by moving, there is still a (small) possi-
bility that some agents will move, as implied by the behavioral rule in Equation (3).
If agents indeed make such mistaken moves, the system is no longer in equilibrium

C© 2010, Wiley Periodicals, Inc.



178 JOURNAL OF REGIONAL SCIENCE, VOL. 51, NO. 1, 2011

FIGURE 3: Equilibrium Residential Patterns.

because now some agents (including the ones that just moved) can improve their utili-
ties by switching residential locations. It is possible that the agents that just moved will
reverse their switch thus returning the system to its original equilibrium. However, it
is also possible that some other agents will take moves and disturb the system further
away from its original equilibrium before it returns, especially now that some of such
moves can be utility-improving because of the negative externalities created by other
agents’ mistaken moves earlier. In this way, an equilibrium state can be “tipped” away
by mistaken moves. The system will then evolve as agents move to increase (and, occa-
sionally, mistakenly decrease) their utilities. At some point, it may reach an equilibrium
state that represents a residential pattern very different from the original equilibrium
state.
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Value of ρ

a         b          c
Communicating states 

FIGURE 4: Tipping between Two Equilibrium States in a Restricted Process.

I shall try to illustrate this process with a heuristic example depicted in Figure 4.
Define two states as immediately communicating states if the system can travel from one
state to the other through a single switch of residential locations between two agents. Also,
recall that each state corresponds to a value of the potential function � , the total number
of pairs of unlike neighbors. Consider a series of states lined up on the horizontal axis,
each pair of adjacent states being two immediately communicating states. Assume that
the value of the potential function at each state is given by the curve plotted in Figure 4.
For the time being, assume that the system can only visit these states on the horizontal
axis. In particular, if the system is currently in state x (not an end point in Figure 4), only
two pairs of agents are allowed to consider a switch. If one pair is picked and they decide
to switch residential locations, the system moves to the state on the left of x; if the other
pair is picked and they decide to switch, the system moves to the state on the right of x.
In either case, if the picked agents do not switch, the system stays in state x.

The potential function shown in Figure 4 has two local minima at states a and c.
Moving away from a or c, whether to the left or to the right, will increase the value of
function � and therefore by Equation (4) will decrease the moving agents’ utilities. Thus
a and c are equilibrium states. Any other state is not an equilibrium because it always
has an adjacent state with a lower value of � , meaning that moving the system to that
adjacent state increases the total utilities of the agents who make the switch.

Consider the system that is restricted to the set of moves as shown in Figure 4.
What will happen if the system happens to be in state a? It is very likely that it will
stay there because moving in either direction increases the value of � and thus involves
utility-decreasing switches that occur with small probabilities. What if the system does
move away from a as a result of a mistaken switch by two agents? It is then very likely
that the system will move back instead of moving further away from a, because moving
back increases the agents’ utilities and moving further away does the opposite. In fact,
starting from any state on the left side of b, it is most likely that the system would soon
end up in a because it only takes a series of utility-improving moves. For the same reason,
starting from any state on the right side of b, it is most likely that the system would

C© 2010, Wiley Periodicals, Inc.



180 JOURNAL OF REGIONAL SCIENCE, VOL. 51, NO. 1, 2011

soon end up in the other equilibrium state c. Therefore, in the long run, the system would
spend almost all the time in states a or c; a visit to any other state will necessarily be
transient.

Now the question is whether the system tends to spend more time in a or in c. Again,
suppose the system starts in state a. Notice that it takes a finite number of steps for the
system to move to state b, each involving a utility-decreasing move that occurs with a
small probability. Given that each of these utility-decreasing moves can happen with a
positive probability, there is a positive probability (although extremely small) that this
whole series of mistaken moves occur one after another. In that case, the system will move
away from a to the right and reach state b. If it goes beyond b, the system will likely move
to state c quickly because to do so only involves a series of utility-improving switches,
each occurring with a probability close to one. Therefore, the system can be tipped away
from equilibrium state a through accumulation of mistaken moves and evolve into the
other equilibrium c. Naturally, state b can be thought of as the tipping point because once
this point is passed the system tends to quickly travel to c and the chance of returning to
a is miniscule.

If the system can be tipped away from equilibrium state a, it can also be tipped
away from equilibrium state c. Tipping away from c will take a series of utility-decreasing
switches to move the system from c to b, after which it tends to quickly move toward a
because moving from b to a only involves utility-increasing switches. As shown in Figure 4,
the potential function � attains different values at a and c. Its value at c is much smaller
than its value at a. This means that the increase in � as the system moves from a to b
is much smaller than the increase in � as the system moves from c to b. In other words,
moving the system from a to b requires fewer mistakes (or less serious mistakes measured
by the resulting utility losses) than moving the system from c to b. Thus, the probability
of tipping away from a, although very small in absolute value, is many times larger than
the probability of tipping away from c. Therefore, in the long run, the system would spend
most of the time in c or around c. The system does visit every state in the long run, but
it will not be trapped in any of them because of the positive probability of making utility-
decreasing switches. However, it is most difficult to escape from state c, not only more
difficult than from any of the nonequilibrium states, but also more difficult than from the
other equilibrium state a.

Here is a quick summary of what I just demonstrated. In the simple example shown
in Figure 4, there are two equilibrium states. Tipping could happen to either equilibrium
through the accumulation of mistaken switches. However, the chance of tipping is much
smaller for one equilibrium than the other, and therefore the equilibrium state that is
more resistant to tipping will naturally be observed most of the time in the long run.
Interestingly, the equilibrium state more resistant to tipping is also the state that gives
the lowest value of the potential function. Recall that the potential function � is defined as
the total number of pairs of unlike neighbors. Thus the minimum value of � corresponds
to the most segregated residential pattern.

In the analysis of the simplified example shown in Figure 4, the movement of the
dynamical system is restricted to a small set of states. The unrestricted version of the
model is clearly much more complicated. Given a large dimension of the lattice graph, the
total number of states (although finite) is very large; even the total number of equilibrium
states is fairly large. In addition, each state is directly communicating with a large number
of other states because a switch of residential locations between any black agent and any
white agent will move the system to a different state. In the rest of this section, I will show
that the insight revealed by the simple example in Figure 4 is actually valid in general.

Consider any equilibrium state x. A large number of states differ from state x by
only one switch because any pair of agents may be chosen and make a switch. By the
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definition of equilibrium, any state y directly communicating with x will never give the
potential function a lower value than x does. That is, the system can move from y to x
through a utility-increasing (or utility-preserving) switch. Similarly, there may be some
states from which the system can travel to x by two or more switches, each of which either
increases or preserves the moving agents’ utilities. Define the basin of attraction of an
equilibrium state x as the set of all states from which the system can travel to x through a
finite number of steps that does not involve a single utility-decreasing switch. The states
that belong to two basins of attraction can be thought of as the boundary between them.
Starting from any equilibrium state, a series of utility-decreasing switches could move
the system away from the equilibrium and reach the boundary of its basin of attraction.
Once the system passes the boundary, tipping has occurred because now the system is in
a different basin of attraction and some utility-increasing (or utility-preserving) switches
will take it to a different equilibrium.

Therefore, I formally define the tipping of an equilibrium as the process of moving out
of its basin of attraction through the accumulation of low-probability utility-decreasing
switches. And a tipping point is a point on the boundary of the basin of attraction, beyond
which the system can move further away from its original equilibrium with no utility-
decreasing switches. Because tipping could happen to any equilibrium of the system, it is
useful to identify the ones that are more resistant to tipping than others.

To be intuitively appealing, an equilibrium state x that is resistant to tipping should
have the following two properties.

First, if the dynamical system is in state x, it has a high probability of remaining in
state x in the next period. This implies that a mistaken switch will hardly ever happen
when the system is in this equilibrium.

Second, if the dynamical system moves away from x as a result of one or a few
mistaken switches, there is a high probability of going back to x within a small number of
periods. This implies that even if some mistaken switches have occurred, it takes many
more such utility-decreasing moves for the system to get out of the basin of attraction,
thus it is likely to return to the original equilibrium before long.

If one thinks of “staying in x” as returning to x in one period of time, these two features
are in fact the same: They both mean that the system, starting from the equilibrium state
x, will return to x very soon. Therefore, it is sensible to measure an equilibrium state’s
resistance to tipping using the expected number of periods for the system to return to the
equilibrium given that it starts from the equilibrium.

Denoting r(x) as the resistance to tipping of equilibrium state x and P�
xx(i) as the

probability of the system moving from state x to itself in exactly i periods, I define r(x) as
the following:

r(x) = 1
∞∑

i=1

iP�
xx(i)

.(5)

Given a finite �, P�
xx(1)<1, implying that the sum in the denominator is larger than 1 and

therefore r(x) <1 for all x. Under this measure, an equilibrium state is considered more
resistant to tipping if it takes fewer periods (in expectation) for the system to return to
the equilibrium given that it starts there.

Main Result

I shall summarize the basic setup of the model as follows:
(1) A finite number of black and white agents reside on a lattice graph, each occupy-

ing a vertex of the graph. (2) Each agent has a preference over the neighborhood racial
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composition, which is represented by a single-peaked utility function in the form of Equa-
tion (2) as shown in Figure 1. (3) In each period of time, two agents from different neigh-
borhoods are randomly chosen and they decide on whether to switch residential locations
based on the behavioral rule given by Equation (3).

Given these assumptions, one can prove the following theorem:

THEOREM: Given sufficiently large � and t, the residential pattern of complete segrega-
tion is most resistant to tipping and is observed almost all the time.

I will give a sketch of the proof here. First, it is easy to check that the finite Markov
chain defined in the model, P�, is irreducible, aperiodic, and recurrent. The process is
irreducible because all states communicate with each other. It is aperiodic because starting
in any state x, the system may enter state x again in any finite period of time. The process
is recurrent because starting from any state x, the system will reenter state x in the
future with probability one. It is a standard result in elementary Markov chain theory
that an irreducible, aperiodic, and recurrent Markov chain has a stationary distribution
� such that �(x) is the probability of the system arriving in state x as time goes to infinity,
independent of the initial state.18 �(x) can also be interpreted as the long-run proportion
of time that the Markov chain is in state x. The following result links an equilibrium
state’s resistance to tipping to its stationary probability.19

LEMMA 2: Let r(x) be the resistance to tipping of state x and �(x) its stationary probability,
then �(x) = r(x) for any state x.

Lemma 2 implies that if a state is more resistant to tipping, the dynamical system
spends a larger proportion of time in it in the long run. Given the definition of r(x), it
means that the long-run proportion of time spent in state x equals the inverse of the
expected time between two consecutive visits to x.

To complete the proof of the theorem, I only need to show that �(x) decreases expo-
nentially with � (x). This is given by the following lemma:20

LEMMA 3: If �(x) is the stationary distribution of the perturbed process P�, then

�(x) = e− �
�

� (x)+c,(6)

where � > 0, � = 2n/M > 0, and c are all constants.

Recall that 2n is the size of a neighborhood and M is the utility loss of moving
from a neighborhood with 100 percent same-color neighbors to a neighborhood with no
same-color neighbors. Given any two states x and y, it follows that

�(x)
�(y)

= e− �M
2n [� (x)−� (y)].(7)

Because �, M, and n are all positive, this ratio is greater than one if and only if
� (y) > � (x). Let S be the set of all states that give a minimum � , that is, S = {x| � (x)
≤ � (y) for all y in X}. Suppose x is a state in S and y is an arbitrary state such that � (y)
> � (x). Given fixed values of M and n, the ratio �(x)/�(y) goes to infinity as � approaches
infinity. Therefore, if � is infinitely large, �(y) goes to zero for any y such that � (y) > � (x),
and �(x) > 0 if and only if x is in S. In other words, only the states with a minimum � will
have a positive probability of being observed in the long run, and only these states have a

18See, for example, Taylor and Karlin (1998, p. 247) for a standard reference.
19See the Appendix of Zhang (2009) for the proof of this lemma.
20Again, see the Appendix in Zhang (2009) for the proof.
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positive resistance to tipping: r(x) = �(x) > 0 if and only if x is in S. Because � is the total
number of unlike neighboring pairs, a state in S corresponds to complete segregation.
Thus, in the long run, complete segregation exists almost all the time given sufficiently
large �, which establishes the theorem.

Equation (7), derived from lemma 3, provides some useful insights into the forces
that drive residential segregation. Consider any two states x and y such that � (x) < � (y),
Equation (7) implies that the ratio �(x)/�(y) increases with � and M. That is to say, com-
plete segregation (with minimum � ) is observed more often if � is larger and if M is
larger. As discussed above, a large � means that the agents’ decision to switch residential
locations is primarily determined by their preference over neighborhood racial composi-
tion. A large M means that living with 100 percent same-color neighbors is much better
than no same-color neighbors. Therefore, complete segregation in this model is driven by
the extent to which racial preference affects residential choice and the utility difference
between living in an all-white neighborhood and living in an all-black neighborhood.

More interestingly, Equation (7) involves only M but not Z, the utility of living in a
half-black-half-white neighborhood. That is, complete segregation emerges and persists
in this model entirely because living with all same-color neighbors is considered better
than living with no same-color neighbors (M > 0). How much an agent likes the half-half
neighborhood (measured by the value of Z) is totally irrelevant. This is true because once
complete segregation emerges, mixed-race neighborhoods are rare and only exist along
the color line. For most agents, the choice is between living with all white neighbors and
living with all black neighbors. It is thus natural that the difference between these two
situations determines the stability of segregation.

Equation (7) also makes it clear why it is necessary to assume a relatively small
neighborhood size 2n. Consider an extreme case in which 2n = N2 − 1, that is, an agent
considers all other agents as her neighbors. Then, for any two states x and y, it is always
true that � (x) = � (y) and thus �(x)/�(y) = 1. That is, any two states are observed with equal
probability even if � and M are large. Therefore, it is a necessary condition for segregation
that an agent only cares about the racial composition of nearby agents instead of the whole
population.

It is important to note that the analytical techniques developed in this section of the
paper are also applicable in other contexts. Consider again the states in S that minimize
the potential function � . Lemma 3 implies that

lim
t→∞,�→∞

�(x) > 0 if and only if x is in S.

This is precisely the defining property of a stochastically stable set in the game the-
ory literature. Then the states in S are known as the stochastically stable states
or the stochastically stable equilibria of the spatial game (Foster and Young, 1990).
Lemma 2, together with lemma 3, also implies that the states in S are the only states with
a positive measure of resistance to tipping in limit. Therefore, in the process of proving
the theorem, I have demonstrated that the idea of tipping, as formulated here, is closely
related to the concept of stochastically stable equilibrium in evolutionary game theory. In
fact, an equilibrium residential pattern’s property of being the most resistant to tipping
was shown to be equivalent to being stochastically stable. This theoretical insight that
links the intuitive concept of tipping to a broad set of analytical tools in mathematical
game theory is likely to be useful for analyzing other types of tipping phenomena.

4. SIMULATION

This section presents agent-based simulations to illustrate the analytical results
proved above. I arbitrarily choose a 30 × 30 lattice graph, so there are 900 agents in 900
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residential locations. Again, the Moore neighborhood definition is used so that every agent
considers the eight surrounding agents as neighbors. In all the simulations presented
below, I set � = 10.

I parameterize an agent’s utility function by setting n = 4, Z = 1, and M = 0.6.
Equation (2) is thus reduced to the following mapping:

Number of same-color neighbors 0 1 2 3 4 5 6 7 8
Utility 0 0.25 0.5 0.75 1 0.9 0.8 0.7 0.6

The first simulation starts from the residential pattern labeled as “stripes,” in which
two rows of blacks always follow two rows of whites (panel (a) in Figure 5).21 A typical
agent in this initial state has five same-color neighbors. Although this is not the most
preferred situation from an agent’s point of view, the two groups are fairly integrated
throughout the area. As discussed above, this is an equilibrium state and only utility-
decreasing switches can move the system out of the initial state.

Indeed, in a typical run of the simulation, the initial state stays unchanged for
some time after the simulation starts. However, this usually does not last long before
some mistaken switches occur. And before such mistaken switches are reversed, some
other mistaken ones follow. As panel (b) in Figure 5 shows, a series of utility-decreasing
switches have been made mistakenly, which has moved the system fairly far away from
its original equilibrium. In the initial state, the total number of unlike neighboring pairs
is 1,260 (the value of “Rho” shown at the bottom of panel (a)). In panel (b), this number
has increased to 1,359, as a result of all the mistaken switches. By now, the system is out
of equilibrium and many pairs of agents can increase their utilities by trading residential
locations if they are chosen to consider a switch. Such moves continue to happen over
time and the total number of unlike neighboring pairs continues to decline. As panel (c) of
Figure 5 shows, the whole area has evolved into a rather segregated residential pattern.
In the long run, as shown in panel (d), complete segregation emerges. Every now and
then, mistaken moves still occur, which increases the value of � , but they only happen
occasionally and never push � back too high. Thus complete segregation persists over
time.

Figure 6 traces the evolution of � , which helps illustrate how tipping occurred to
the original equilibrium. For some time after the simulation starts, the value of � does
not change. As mentioned above, this is because the starting state is an equilibrium and
any switch in that situation will decrease utilities and thus will happen with a very small
probability given a fairly large �. Eventually, such mistaken moves are taken and the value
of � increases. The accumulation of the mistaken moves soon pushes the system beyond
a tipping point, which is shown as the � function reaches its maximum in Figure 6. After
that point, the � function declines rather sharply because many agents find that they
can increase their utilities by trading residential locations. However, each such switch
actually takes the system one step further toward complete segregation. Occasionally,
utility-decreasing switches still happen as indicated by the small increases in � , but the
probability of such events is too small to stop the evolution of the system into complete
segregation.

21As indicated in the previous section, the results in the model do not depend on the proportion
of the population that is black. In the simulations presented here, the numbers of blacks and whites are
chosen to be either roughly the same (as in this first simulation) or exactly the same (as in the next one).
This choice is somewhat arbitrary, but it does have one advantage. It clearly shows that the results of the
model have nothing to do with the fact that blacks are a minority group in most U.S. cities.
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FIGURE 5: Tipping of an Equilibrium Residential Pattern (“Stripes”).

In Figure 6, the small values of the � function at the right end correspond to highly
segregated residential patterns. In theory, the probability of reversing the process and
moving back to the initial state is still positive. However, pushing the � function so high
requires a large number of utility-decreasing switches. Given that such switches happen
with slim chances, the probability that a large number of them happen one after another
is virtually zero. Thus, it is almost certain that the tipping of the original equilibrium is
irreversible.

The second simulation, shown in Figure 7, starts with a checkerboard pattern. This
initial state is not only the most integrated residential pattern but also the socially optimal
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FIGURE 6: Evolution of the Potential Function, Starting with an Equilibrium
Residential Pattern (“Stripes”).

one because exactly half of every agent’s neighbors are the same color. However, in the
long run, it is also tipped into complete segregation. Most interestingly, as shown by the
evolution of the � function in Figure 8, this Pareto optimal state is in fact less resistant
to tipping than the “stripes” equilibrium just discussed above. The � function in the
initial state is at its maximum, and thus no switches will increase � . This means that no
switches will decrease the moving agents’ utilities. The tipping of this equilibrium state
occurs immediately as the � function starts to decrease right away; reversing the process
is not likely to happen because it takes a large number of utility-decreasing switches to
do so.

What happened to this socially optimal state is instructive. In the initial state, every-
body lives in a half-half mixed neighborhood, thus it is not a bad idea to switch because
after a switch both agents still end up in a half-half neighborhood. Thus agents are not
restrained from trading residential locations. However, they ignore the externalities they
create by their moves. Consider a black agent in the initial state who decides to trade
residential location with a white agent. Both still have half black neighbors and half white
neighbors after the switch. In the neighborhood the black agent just left, all her neighbors
will lose a black neighbor and have one more white neighbor; each of them now has a lower
utility than before. Neither the black agent who is moving out nor the white agent who
is moving in takes these losses of utilities into account. After their switch, some blacks
have 62.5 percent (or 5/8) white neighbors, and some whites have 62.5 percent black
neighbors. By assumption, if a black with 62.5 percent white neighbors trades residential
location with a white with 62.5 percent black neighbors, both attain higher utilities. As
a result, they are likely to do it. Unfortunately, as they make the switch, they push both
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FIGURE 7: Tipping of the Socially Optimal Residential Pattern.

neighborhoods even further away from the half-half balance. This leaves some of their
previous neighbors even more discontent with their neighborhoods and thus more agents
will move. The integrated residential pattern is soon broken and all the utility-increasing
moves will only push the system even further toward segregation.

Now the question is why a complete segregation cannot be tipped into a socially
optimal residential pattern given that nobody likes segregation. This simulation illus-
trates the answer. Once complete segregation emerges, how much agents like integrated
neighborhoods becomes irrelevant in their moving decisions because very few locations
(along the color line) qualify as such neighborhoods. For example, a black agent living
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FIGURE 8: Evolution of the Potential Function, Starting with the Socially Optimal
Residential Pattern.

in an all-black neighborhood has essentially two choices when considering a move. One
is to trade with another black who lives in another all-black neighborhood. In this case,
the switch does not affect the overall residential pattern. The other possibility is to trade
with a white agent who lives in an all-white neighborhood. In this case, both agents move
from one extreme to the other. As assumed, if integrated neighborhoods are unavailable,
agents prefer to live with same-color neighbors. Thus the move is a bad deal for both
agents and will be unlikely to occur.

Therefore, although everybody prefers a socially optimal integrated residential pat-
tern, it is not stable. Too many utility-preserving moves can disturb this equilibrium and
tip it into segregation. On the other hand, although nobody likes complete segregation,
the residential pattern is very stable. Only moving across the color line by a considerable
number of agents could disturb the segregation equilibrium, but nobody has incentive to
do so because it causes a loss of utility.

This gives one plausible explanation for why segregation is persistent in U.S.
metropolitan areas despite the stated preference for integration. Segregation is stable
not because people like it, but because any individual who wants to change the situation
unilaterally will have to go across the color line, which may not be the desirable thing
to do from the individual’s perspective. A similar point was first emphasized by Zhang
(2004a).

Some insights from economics can help us better understand the outcome of the
model. The failure of the system to escape complete segregation is similar to the phe-
nomenon of “coordination failure” studied by economists in many other contexts. It is
the agents’ inability to move simultaneously that make them stuck in a situation nobody
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likes.22 The fact that the socially optimal integrated neighborhoods are prone to tipping
has to do with the notion of externality.23 It is the exclusion of the external costs (imposed
on neighbors) in the agents’ decision to move that makes the Pareto optimal residential
pattern fall apart. Similarly, it is the exclusion of the external benefits from the agents’
decision to move that keeps complete segregation stable. A perfect analogy to this result
in welfare economics is that a competitive market equilibrium fails to produce a Pareto
optimal allocation of resources if there exist consumption externalities.24

5. CONCLUSION

In a series of writings, Schelling (1969, 1971, 1972, and 1978) presents two dynamic
models of residential segregation. His checkerboard model uses simulations to show that
segregational residential patterns are consistent with various individual preferences,
including those with only a moderate inclination to live with same-color neighbors. His
neighborhood tipping model demonstrates that seemingly unimportant random shocks
could shake a neighborhood out of one equilibrium situation and move it to another
equilibrium that is radically different. Using these models, Schelling teaches us that it is
difficult to infer “micromotives” from observed “macrobehavior” (Schelling, 1978).

In this paper, I presented a Schelling-type checkerboard model that can be rigorously
analyzed. I have shown that segregation emerges and persists in an all-integrationist
world where everybody prefers to live in a mixed-race neighborhood, a result consistent
with Zhang (2004a) and Pancs and Vriend (2007) but stronger than Schelling’s original
finding. Schelling’s idea of tipping, which has always been used in a single-neighborhood
setting, is now introduced into the multineighborhood checkerboard model. I have demon-
strated that tipping occurs in this checkerboard model in the sense that the accumulation
of low-probability random events can perturb an equilibrium residential pattern and trig-
ger the move into a completely different equilibrium residential pattern. The concept of
tipping is crucial for understanding the dynamics of segregation in this checkerboard
model. Indeed, segregation emerges and persists precisely because tipping tends to occur
to integrated residential patterns but not to completely segregated ones. Schelling’s in-
sights, illustrated in his two separate models of segregation, are therefore unified into a
single model.

This unified model helps us better understand the persistence of segregation in U.S.
metropolitan areas during the past few decades. Following Schelling’s work, it points out
the possibility that segregation persists not because people really like it, but because it is
a stable state. As the model shows, tipping away from segregation is difficult because the
first step involves some blacks moving into predominantly white neighborhoods or some
whites moving into predominantly black neighborhoods or both. If people really dislike
being isolated in a neighborhood of the opposite color, as survey data seem to suggest,
they will not take the first step even though they really like “half black, half white”
neighborhoods. Thus, they get stuck with segregation.

22Many segregational outcomes in Schelling-type models may be understood as coordination failures.
See, for example, Hoff and Sen (2005) and Zhang (2004a).

23Some earlier research on segregation and neighborhood transition also emphasized neighborhood
externalities. See, for example, Bond and Coulson (1989), Borjas (1995), Miyao (1978), and Schnare (1976).

24The situation implies that there is a potential improvement of social welfare through government
intervention. One way to achieve it may be to arrange a socially desirable residential pattern and limit
individuals’ ability to move afterward. The constraint on residential choice can take the form of either
direct government regulation on certain types of moves or market-based policies such as taxes on or
subsidies to certain types of moves. Singapore has a public housing policy with ethnic integration as a
primary goal, which was indeed inspired by Schelling’s work (Dodge, 2006, Chapter 17, pp. 141–143).
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This paper is by no means suggesting that segregation will stay forever as a salient
feature of urban America. Survey data show that individual residential preferences in the
United States have become more favorable toward the general notion of integration (Bobo,
2001). If this trend continues, two conditions of the model may no longer be satisfied in
the future. First, the aversion to a neighborhood of the opposite color may fade away (i.e.,
the asymmetry in the utility function disappears). Second, racial preferences may stop
being the primary factors that drive residential location decisions (i.e., parameter � is not
sufficiently large). In both cases, segregational housing patterns are not stable any more.
Indeed, some recent studies have found that stable integrated neighborhoods, although
still rare, are becoming more common (see, e.g., Ellen, 2000 and Rawlings et al., 2004),
which may be an indication that we are moving in the direction toward integration.

As a key theoretical contribution of this paper, I have established a link between
the often loosely formulated idea of tipping and the stochastically stable equilibrium, a
rigorous equilibrium concept in evolutionary game theory. I have shown that a residential
pattern’s property of being the most resistant to tipping is equivalent to being a stochasti-
cally stable equilibrium. Because of this theoretical insight, a rich collection of analytical
tools in stochastic evolutionary game theory becomes useful for analyzing tipping phe-
nomena.25 Given that tipping-type dynamics are commonly observed, I anticipate that
the method developed in this paper will find its applications in some other contexts.

This paper can be extended in different directions. First, much analytical work re-
mains to be completed. To keep the model tractable, I have made a set of rather strong
assumptions. For example, housing market and nonracial neighborhood characteristics
are ignored; racial preferences are symmetric between groups and identical within each
group; and moving opportunities come up independently of agents’ satisfaction or dissat-
isfaction with their current neighborhoods. Future research may explore which of these
assumptions are crucial for the analytical results and which can be relaxed.

Second, the model in this paper can also be used to motivate empirical work. For
example, the model predicts that residents’ unwillingness to move across the color line
is the crucial factor to make segregation persistent. One could collect survey data in
different cities and test the theory by correlating individuals’ answers to this question
and the degree of segregation at the city level, similar to what Cutler et al. (1999) and
Card et al. (2008a) did in their papers. The model also predicts that given the asymmetric
residential preference, segregation would persist if parameter � is large, that is, if racial
preference is the key factor in driving residential location choices. This, in principle, can
also be tested empirically.
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