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A B S T R A C T

As high-latitudes warm, permafrost thaws, and the hydrological cycle accelerates, ground-based monitoring of
riverine organic matter may be supplemented by satellite remote sensing during ice-free conditions. Recent
programs, namely the Arctic Great Rivers Observatory, have established methodologically consistent sampling
across the hydrograph, and shared the resulting data publicly. However, these efforts are limited by frequency,
funding, and length of record. Satellite remote sensing can be used to estimate chromophoric dissolved organic
matter (CDOM) as a riverine constituent that influences optical properties in surface waters. In this study, daily
CDOM absorption was first estimated using discharge-constituent regression-based models for 2000–2013. We
then regressed these discharge-based CDOM estimates against Landsat TM and ETM+ surface reflectance data
from Google Earth Engine for the six largest rivers draining the pan-Arctic watershed (the Kolyma, Lena,
Mackenzie, Ob', Yenisey, and Yukon rivers). These CDOM results were converted to dissolved organic carbon
(DOC), using the strong relationship (R2=0.88) between direct measurements of the two constituents. Using
river-specific remote sensing models, R2 could be as high as 0.84. Grouping all rivers into a single “universal”
regression reduced R2 and increased root mean square errors, such as in the Yenisey River where R2 dropped by
0.63, and RMSE rose by 1.1 m−1. Seasonally varying discharge drove much of the variation in satellite-derived
CDOM and DOC, corroborating recent studies. Satellite imagery can increase the frequency of monitoring ob-
servations, particularly during summer and fall when riverine CDOM absorption may be most sensitive to
thawing permafrost.

1. Introduction

Rivers transport over 3300 km3 per year of water to the Arctic
Ocean, representing ~10% of global riverine discharge annually into an
ocean basin containing ~1% of global ocean volume (Aagard and
Carmack, 1989; Menard and Smith, 1966). As such, terrestrial processes
that impact the delivery of water and water-borne materials have the
potential to strongly influence physical, chemical, and biological at-
tributes of the Arctic Ocean. Riverine dissolved organic carbon (DOC) in
particular is an important component of the Arctic carbon cycle, linking
terrestrial and marine systems (Cooper et al., 2005; Holmes et al., 2012;
Manizza et al., 2011). Dissolved organic matter (DOM) in major Arctic
rivers is largely allochthonous, sourced from modern vegetation and a
smaller fraction from ancient permafrost soils (Guo et al., 2012; Mann
et al., 2012; Neff et al., 2006; Raymond et al., 2007). Impacts from
rapid climate change, such as thawing permafrost (Frey and

McClelland, 2009; Striegl et al., 2005), an accelerated hydrological
cycle (White et al., 2007), and increased fire activity (Elmquist et al.,
2008; Stubbins et al., 2015), influence the concentrations and compo-
sition of DOM in Arctic rivers. Recent studies have established that DOC
from Arctic rivers can be highly labile (Frey et al., 2016; Gustafsson
et al., 2011; Mann et al., 2015; Wickland et al., 2012), and losses of
river-supplied DOC have been observed along Arctic shelves (Alling
et al., 2010). These losses are likely driven by both biological utilization
and photochemical interactions with chromophoric dissolved organic
matter (CDOM) (Bélanger et al., 2006; Le Fouest et al., 2013; Stedmon
et al., 2011), although the relative importance of these processes, and
their interactions, remain to be determined. CDOM, the portion of the
DOM pool that absorbs light at short wavelengths, is a useful proxy for
DOC concentrations in many systems and is important for photo-
chemical transformations (Hu et al., 2002; Spencer et al., 2012).

Although many questions remain about the fate of DOM in the

https://doi.org/10.1016/j.rse.2018.02.060
Received 27 October 2017; Received in revised form 14 February 2018; Accepted 22 February 2018

⁎ Corresponding author.

1 Present address: Department of Ecology, Evolution, and Behavior, University of Minnesota – Twin Cities, Saint Paul, MN, USA.
E-mail address: griffin.claireg@gmail.com (C.G. Griffin).

Remote Sensing of Environment 209 (2018) 395–409

0034-4257/ © 2018 Elsevier Inc. All rights reserved.

T

http://www.sciencedirect.com/science/journal/00344257
https://www.elsevier.com/locate/rse
https://doi.org/10.1016/j.rse.2018.02.060
https://doi.org/10.1016/j.rse.2018.02.060
mailto:griffin.claireg@gmail.com
https://doi.org/10.1016/j.rse.2018.02.060
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2018.02.060&domain=pdf


coastal ocean, coordinated sampling efforts on the six largest Arctic
rivers, initiated in 2003 (McClelland et al., 2008), have helped to better
constrain estimates of fluvial export. Approximately 35 Tg of DOC is
transported by Arctic rivers annually, of which ~15 Tg C are exported
by the six largest Arctic rivers during the ice-free seasons (McGuire
et al., 2010; Holmes et al., 2012). The Arctic Great Rivers Observatory
(Arctic-GRO; 2009–present), originally established as the Pan Arctic
River Transport of Nutrients, organic mattER, and suspended Sediments
(PARTNERS; 2003–2007) project, samples the six largest Arctic rivers
across the hydrograph. These rivers – the Kolyma, Lena, Mackenzie,
Ob', Yenisey and Yukon – deliver over 50% of annual river discharge
and DOC flux to the Arctic Ocean (Holmes et al., 2012). The multi-year
datasets from PARTNERS/Arctic-GRO have been used to empirically
model fluxes of dissolved and particulate constituents using the USGS
Load Estimator (LOADEST) (Holmes et al., 2012; Mann et al., 2016;
McClelland et al., 2016). The continued success of this approach,
however, is contingent upon long-term funding of water discharge and
biogeochemical measurements. LOADEST is a regression-based method
that uses discharge-constituent relationships to model fluxes (Runkel
et al., 2004), and these relationships can change over time. For ex-
ample, Tank et al. (2016) defined separate DOC-discharge relationships
for each decade to calculate fluxes in the Mackenzie River since the
1980s. Numerous studies in high-latitudes (Larouche et al., 2015) or
large river systems (Mann et al., 2014) have tied DOC concentrations or
CDOM absorption to important watershed processes (Worrall and Burt,
2010), even when discharge data is unavailable. Satellite remote sen-
sing offers a method of monitoring Arctic rivers that, once established,
is independent of discharge.

Satellite imagery has been used over the past decade to map CDOM
remotely in a number of optically complex waters (Belanger et al.,
2008; Brezonik et al., 2015; Fichot et al., 2013; Kutser, 2012; Menken
et al., 2006). Although not originally designed for remote sensing of
water quality, the Landsat Thematic Mapper and Landsat Enhanced
Thematic Mapper Plus (Landsat TM and ETM+, respectively) have
been used to estimate suspended sediment, chlorophyll, turbidity, and
CDOM in lakes, rivers and the coastal ocean (Griffin et al., 2011; Joshi
and Sa, 2015;Lymburner et al., 2016; Lobo et al., 2015; Olmanson et al.,
2008). Landsat TM and ETM+ are limited by lower sensitivity and
spectral resolution than ocean colour sensors or newer platforms such
as Sentinel-2 or Landsat Operational Land Imager (OLI), making esti-
mations of CDOM difficult in very dark waters with little water-leaving
radiance (Kutser et al., 2005; Pahlevan and Schott, 2013; Palmer et al.,
2015). Despite these limitations, the high spatial resolution and long-
term dataset (1984–present) of Landsat TM and ETM+ make these
sensors the best option for monitoring many inland waters (Kutser,
2012).

Here, we present an empirical approach relating CDOM in the six
largest Arctic rivers to Landsat reflectance data. The regression-based
models presented here represent the first pan-Arctic assessment of DOM
in rivers from satellite remote sensing. Using Landsat imagery in con-
junction with ground-based measurements of CDOM absorption and
DOC concentrations, we estimated CDOM in the six largest Arctic rivers
for 424 dates from May through October 2000–2013. We evaluate both
“universal” and river-specific regressions, and compare our results to
field-based measurements and regression-based discharge constituent
models. As well, we examine whether relationships based on temporal
variability can be spatially extrapolated.

2. Methods

2.1. Data collection and analysis

Field samples for model development were collected from the
Kolyma, Lena, Mackenzie, Ob', Yenisey and Yukon rivers between 2003
and 2013 as part of the Arctic-GRO and PARTNERS projects (Fig. 1;
www.arcticgreatrivers.org). Samples from 2014 to 2016 were used for

independent validation of remote sensing models.
Depth-integrated cross-sectional sampling was conducted at down-

stream locations on each river, capturing 96% of drainage from their
combined watersheds, a total of 10.9 million km2 (Holmes et al., 2012).
Comparisons of surface samples and depth-integrated samples from the
Arctic-GRO/PARTNERS sites have demonstrated that DOC and other
dissolved constituents are evenly distributed throughout the water
column at these sites (Holmes et al., 2012; Raymond et al., 2007). For
more details on sample collection, see previous publications from
Arctic-GRO/PARTNERS (Holmes et al., 2012; Raymond et al., 2007;
Walker et al., 2013). Sampling campaigns from 2004 to 2011 explicitly
addressed the highly seasonal nature of Arctic rivers, with targeted
sampling during spring freshet, throughout the ice-free period, and
during winter under the ice (McClelland et al., 2008). From 2012 –
present, sampling occurred on each river every other month. Additional
samples, used in this study for further model evaluation, were collected
during field campaigns to the Mackenzie (2011) and Kolyma (2013)
rivers, in the spring shortly after ice break-up on each river. These
surface samples, from approximately 0.5m depth, were collected and
stored in polycarbonate or HDPE bottles, 1–2 L volume, and processed
within hours of collection.

Arctic-GRO and PARTNERS DOC and CDOM samples were filtered
within 2–4 h of sample collection through 0.45 μm Geotech medium or
high capacity capsule filters into pre-cleaned, pre-rinsed HDPE bottles
and shipped frozen to the Woods Hole Research Center (WHRC). DOC
samples from PARTNERS (2003–2006) were measured for concentra-
tion at the National Ocean Sciences Atomic Mass Spectrometry (AMS)
facility at Woods Hole Oceanographic Institute or the AMS facility at
University of Arizona (Holmes et al., 2012; Raymond et al., 2007). All
Arctic-GRO DOC samples were measured at the WHRC using a Shi-
madzu (TOC-V) organic carbon analyzer. Absorbance was measured at
WHRC using a dual-beam Shimadzu UV-1800 with a 1 cm quartz cuv-
ette, from wavelengths 200–800 nm at 1 nm intervals against nanopure
water with±0.4%. Owing to logistical constraints, these measure-
ments were made using frozen water samples which can lead to changes

Fig. 1. Map of the Arctic Ocean drainage basin, with the watersheds of the six rivers
included in this study. Red points are sampling locations on each river: Ob' at Salekhard,
Yenisey at Dudinka, Lena at Zhigansk, Kolyma at Cherskiy, Yukon at Pilot Station, and
Mackenzie at Tsiigehtchic. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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in CDOM as ice excludes organic matter (Belzile et al., 2002; Peacock
et al., 2015). The remote nature of these regions necessitated sample
storage, however, and others have found minimal effects of freezing on
DOM ((Spencer and Coble, 2014) and references therein). Whole water
samples were shipped to the Marine Biological Laboratory for total
suspended sediment (TSS) analyses. These samples were filtered onto
pre-weighed Whatman GF/F filters and weighed after drying for 24 h at
60 °C. The volume of water passing through each filter was recorded,
and TSS concentrations were calculated from the paired mass and vo-
lume data.

Additional field samples from the Mackenzie watershed in 2011 and
Kolyma watershed in 2013 were also filtered through 0.45 μm Geotech
capsule filters into pre-cleaned, pre-rinsed polycarbonate bottles.
CDOM was measured immediately after filtration using a single-beam
Ocean Optics USB4000 UV-VIS spectrophotometer on the Mackenzie
River in 2011. A dual-beam Shimadzu UV-1800 located at the
Northeast Science Station in Cherskiy, Russia was used for CDOM in
2013 for Kolyma river samples. In both cases, absorbance was measured
within 24 h of collection, from 200 to 800 nm through a 1 cm quartz
cuvette, with blank-correction using nanopure water. Samples for
Mackenzie (2011) DOC concentration measurements were frozen and
shipped to WHRC for analysis. Kolyma samples from 2013 were stored
frozen until analyzed with a Shimadzu (TOC-V) at the Northeast
Science Station. Absorbance was converted to absorption coefficients
using Eq. 1:

=a A l(λ) 2.303 (λ)/ (1)

where a(λ) is the absorption coefficient at a given wavelength, A(λ) is
the absorbance at a given wavelength, and l is the path length in meters
(Hu et al., 2002). Absorption at 375 nm was used for subsequent
LOADEST modeling and remote sensing applications, as full absorbance
scans were not available for PARTNERS data from 2003 to 2006.
Chlorophyll, which also can influence remotely sensed CDOM esti-
mates, is generally low in large Arctic rivers (Emmerton et al., 2008;
Meon and Amon, 2004).

2.2. LOADEST modeling

Despite the rich dataset provided by PARTNERS and Arctic-GRO,
there were only 8–25 instances per river where ground sampling cor-
responded to ≤3 days of an ice-free and cloud-free Landsat satellite
overpass from 2003 to 2013. Landsat sensors (Landsat 5 TM and
Landsat 7 ETM+, in this study) are high resolution (30m) multispectral
sensors with a 16 day return interval. Because Landsat sensors are
polar-orbiting, 2–3 scenes overlap any particular point at high latitudes,
allowing more frequent overpasses for each sampling site. Still, the
frequency of clouds and long ice-covered season limit the number of

suitable scenes available and there are only ~4–5 samples from the
field available per river annually during the open water season.

To address this limitation in available field data, we estimated daily
CDOM absorption for 2000–2013 using LOADEST. LOADEST has been
used in multiple studies to estimate concentrations and fluxes of bio-
geochemical parameters based on PARTNERS and Arctic-GRO data
(Holmes et al., 2012; Mann et al., 2016; Raymond et al., 2007; Tank
et al., 2012), and other studies of CDOM flux (Spencer et al., 2013).
LoadRunner version 2.1 (http://environment.yale.edu/loadrunner) was
used to automate LOADEST runs.

Discharge data were collected by the USGS (Yukon), Water Survey
of Canada (Mackenzie), and Roshydromet (Federal Service for
Hydrometeorology and Environmental Monitoring in Russia; Kolyma,
Lena, Ob' and Yenisey). The Yukon River includes discharge data from
2001 to 2013, the Mackenzie River includes discharge data from 2000
to 2012, and all other rivers include discharge data from 2000 to 2013.
On the Ob', Yukon and Mackenzie rivers, discharge gauging stations
coincide with biogeochemical constituent collection locations. On the
Yenisey and Kolyma, gauging stations are 160 km and 250 km upstream
of constituent sampling, respectively. Discharge gauging occurs 520 km
downstream of constituent sampling on the Lena. We used corrections
of 1 (Yenisey), 2 (Kolyma) and 4 (Lena) days to account for the lag
times between gauging and sample collection (Holmes et al., 2012),
which were applied before running LOADEST (Table 1).

LOADEST model 6 (Eq. 2, below), was used to estimate daily CDOM
absorption and DOC concentration. This model includes terms that
account for seasonality (the terms with sine and cosine functions) as
well as variation in discharge.

= + + +

+

Ln (Conc) a a LnQ a LnQ a Sin (2 π d )

a Cos (2 π d )
0 1 2

2
3 time

4 time (2)

where Q is water discharge in cubic feet per second, LnQ equals Ln (Q)
minus center of Ln (Q), and dtime is decimal time minus center of dec-
imal time. The centering procedure for both discharge and time is used
to avoid multicollinearity. Concentration (Conc) is reported in units of
m−1 for CDOM and as mg/L for DOC. Concentration or absorption
estimates are from the adjusted maximum likelihood output of
LOADEST.

2.3. Landsat image processing

We used the Landsat Ecosystem Disturbance Adaptive Processing
System (LEDAPS, Version 2) data from Google Earth Engine (GEE)
(Gorelick et al., 2017), which calculates surface reflectance for Landsat
5 TM and 7 ETM+ (Hansen et al., 2013; Masek et al., 2006). Landsat
provides a thorough, consistent record of these rivers across the entire
study time period (2000−2013). Other sensors, such as the Advanced

Table 1
LOADEST model coefficients and R2 values from Model 6 (see Methods), used to develop daily CDOM absorption and DOC concentration estimates, ± standard error. Statistically
significant coefficients are marked with an asterisk (*).

River Coefficients± 1 standard deviation R2 (%)

CDOM a0 a1 a2 a3 a4
Kolyma 1.56 ± 0.20* 0.50 ± 0.09* −0.003 ± 0.05 −0.55 ± 0.26* 0.28 ± 0.14* 73
Lena 2.56 ± 0.11* 0.45 ± 0.05* −0.02 ± 0.05 −0.53 ± 0.13 * 0.40 ± 0.09* 89
Mackenzie 1.47 ± 0.31* 1.58 ± 0.43* 0.06 ± 0.45 1.00 ± 0.31* −0.77 ± 0.37* 53
Ob' 2.62 ± 0. 24* 0.53 ± 0.13* −0.17 ± 0.28 −0.30 ± 0.21 −0.16 ± 0.18 45
Yenisey 1.83 ± 0.19* 0.59 ± 0.13* 0.25 ± 0.14 0.37 ± 0.20 −0.29 ± 0.13* 72
Yukon 1.66 ± 0.23* 1.01 ± 0.17* −0.15 ± 0.18 −0.57 ± 0.27* 0.58 ± 0.19* 70

DOC a0 a1 a2 a3 a4
Kolyma 1.82 ± 0.16* 0.41 ± 0.07* −0.03 ± 0.04* −0.67 ± 0.20* −0.07 ± 0.10* 64
Lena 2.38 ± 0.12* 0.33 ± 0.06* −0.03 ± 0.05 −0.57 ± 0.14 * −0.42 ± 0.08 74
Mackenzie 1.43 ± 0.12* 0.18 ± 0.15* 0.17 ± 0.17* 0.08 ± 0.16 −0.04 ± 0.08 31
Ob' 2.33 ± 0. 13* 0.18 ± 0.07* −0.17 ± 0.15* −0.03 ± 0.12 −0.07 ± 0.09* 43
Yenisey 1.74 ± 0.10* 0.39 ± 0.08* 0.06 ± 0.08* 0.29 ± 0.11* −0.07 ± 0.08* 75
Yukon 1.63 ± 0.13* 0.78 ± 0.09* −0.08 ± 0.10* −0.50 ± 0.15* 0.37 ± 0.10* 80
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Land Imager (ALI) or MODerate resolution Imaging Spectroradiometer
(MODIS), would provide improved radiometric sensitivity but lack re-
curring clear sky imagery or spatial resolution to monitor these rivers.
GEE is a relatively new cloud-based platform that allows for on-the-fly
processing of remotely sensed data. Using GEE, downloading hundreds
of satellite images for analyses is no longer necessary and image pro-
cessing can be quickly automated. This is the first study that we know of
using GEE for remote sensing of water quality parameters in inland
waters. Previous GEE studies demonstrated its use for regional to global
scale analyses through time for applications including forest and land
use change (Hansen et al., 2013) and global surface water distribution
(Pekel et al., 2016), and resource use impacts on groundwater
(Huntington et al., 2016).

LEDAPS, also a data product from USGS, applies the 6S radiative
transfer model (Second Simulation of a Satellite Signal in the Solar
Spectrum) to ortho-rectified Landsat data, with auxiliary ozone data
from the NASA GSFC Ozone Monitoring Instrument or Total Ozone
Mapping spectrometer and gridded atmospheric data from the National
Centers for Environmental Prediction (NCEP) (Masek et al., 2006;
Schmidt et al., 2013). Surface reflectance is further corrected using an
internal Aerosol Optical Thickness (AOT) parameter, based on Dense,
Dark Vegetation (DDV) and the correlation of reflectance between the
blue and red bands (Claverie et al., 2015; Kaufman et al., 1997). Pre-
vious studies have shown that the LEDAPS method of calculating AOT is
comparable to retrievals from the Aerosol Robotic Network (AERONET)
and MODIS (Claverie et al., 2015; Maiersperger et al., 2013). This
method does not account for Fresnel reflectance, the scattering of light
at the air-water interface resulting from differences in refraction. A
number of recent papers have used similar approaches in the remote
sensing of water quality, including remote sensing of Secchi depth
(Rodrigues et al., 2017) and CDOM (Slonecker et al., 2016). The USGS
Surface Reflectance Product was designed to be on a global scale, for a
wide variety of environments. We also compared LEDAPS data to Top-
of-Atmosphere (TOA) radiance (Kutser, 2012) (Fig. S2) for the Lena and
Yenisey rivers. Additionally, an initial investigation of the Arctic-GRO
samples compared to Landsat data corrected by ENVI Fast Line-of-sight
Atmospheric Analysis of Hypercubes (FLAASH) showed promising re-
sults (Fig. S3). However, this approach was limited by the small number
of on the ground samples, as discussed in Section 2.2. Additionally,
FLAASH is not easily automated, and given the lack of concurrent
ground-based atmospheric measurements, we could only use a generic
“boreal” model, rather than the ancillary data that is used by LEDAPS.

Over 420 Landsat TM and ETM+ scenes from 2000 to 2013 were
used in the remote sensing analyses (Table 2; Fig. 2). We used scenes
with 30% or less cloud cover, all with clear-sky conditions over sam-
pling locations. Only scenes from May 15th – October 15th were in-
cluded, with scenes from shoulder seasons visually inspected to insure
no interference from floating ice. A 3-pixel-wide cross-section at the
sampling site for each river was digitized and used to extract mean
reflectance for the area of interest (AOI), corresponding to the cross-
sectional sampling design of Arctic-GRO. In images from Landsat 7 ETM

+ post-2003, a failure of the Scan Line Corrector (SLC) caused data
gaps in each image; however, because each cross section spans hun-
dreds of meters in these large rivers, data were missing from only ~25%
or less of the AOI in these scenes. We extracted reflectance from Landsat
bands 1 (blue; 450–520 nm), 2 (green; 520–600 nm), 3 (red;
630–690 nm), and 4 (near infrared; 760–900 nm). River masks were
created using the Hansen et al. (2013) dataset which includes a water
layer. A simple cloud score method based on the thermal band removed
clouds (Hansen et al., 2013).

Samples from 2011 and 2013, collected separately from the main
Arctic-GRO sampling, were used to evaluate whether regression models
based upon temporal variability could be extrapolated across space.
These samples came from main stem, tributary, and channel locations
within the Mackenzie and Kolyma drainage basins. Samples were col-
lected shortly after ice breakup on each river, within a 2–4week period.
In the Mackenzie, most samples that corresponded with cloud-free
Landsat imagery were collected from channels in the extensive delta,
and a handful of samples from tributaries or the main stem of the river.
Kolyma river samples were more evenly split, with five samples from
major tributaries and four samples from different sections of the main
stem of the river. Only samples from channels 90m wide or more are
used here, to avoid edge effects. AOIs consisted of a 30m buffer around
each sampling point, from which reflectance was extracted. In cases
where samples were collected from shore, AOIs were artificially moved
towards the river center to avoid edge effects, on the assumption that
DOM was well-mixed within the river. In the Mackenzie River, all but
one sample was collected on the same day as a satellite fly-over. A June
18th, 2011 sample from the main stem of the river at Tsiigehtchic was
offset from Landsat imagery by one day, and discharged varied between
the two days by< 1%. Sample collection and satellite overpass in the
Kolyma watershed was within±3 days. While we do not have dis-
charge data from Kolyma tributaries to assess their dynamics, discharge
at the main stem of the Kolyma near Cherskiy varied by< 3% between
dates of sample collection and Landsat overpass. The relative stability
of discharge indicates that the main pulse of spring freshet has passed
by the time these samples were collected, and that CDOM dynamics
have slowed. After applying river-specific regression models from
Table 3, Landsat-derived CDOM values were compared to on-the-
ground measurements.

An additional validation was performed using atmospherically
corrected Landsat 7 and 8 data from 2014 to 2016 for all rivers, plus
2013 data from the Mackenzie River. We used cloud and ice-free ima-
gery that matched within 3 days of Arctic-GRO field collection. After
applying the river-specific equations developed above, we compared
remotely estimated CDOM and DOC to measured Arctic-GRO data for
18 dates. These data were not used in developing LOADEST models,
and represent an independent evaluation of the performance of our
models.

2.4. Statistical analysis

All statistical analyses were performed in R software (https://www.
r-project.org/). Although we might expect CDOM to have the largest
effect on reflectance in the blue band (B1) of Landsat, given the ex-
ponential decrease in CDOM absorption as wavelength increases from
200 to 800 nm, most previous studies depend on a combination of the
green and red bands (B2 and B3) (Joshi and Sa, 2015; Kallio et al.,
2008; Kutser, 2012). Some previous studies had success using B1 and
B4 (near infrared band; NIR), as well (Brezonik et al., 2005; Griffin
et al., 2011; Olmanson et al., 2016). Bands 1–4 and band ratios were
tested in exhaustive iterations of linear and multiple linear regressions
against the LOADEST CDOM a375 results, grouped by river (Table 3).
Additionally, we performed the same analysis with all data grouped
together to determine whether a more universal model could be used on
a pan-Arctic scale (Table 3). All Landsat CDOM values reported here-
after refer to absorption at 375 nm. Multiple linear regressions

Table 2
Number of Landsat scenes used to develop regression equations between CDOM ab-
sorption and remote sensing reflectance data. Scenes are from 2000 to 2013.

River Landsat scenes used

Freshet Summer Fall Total

Kolyma 25 35 8 68
Lena 19 38 14 71
Mackenzie 50 47 14 111
Ob' 23 33 19 75
Yenisey 10 38 7 55
Yukon 14 19 11 44
Total 141 210 73 424
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ultimately were the most successful, evaluated based on Schwartz's
Bayesian Information Criteria (BIC) and R2. BIC includes a penalty term
for increasing the number of variables in a regression in order to avoid
overfitting; while useful for model selection, BIC is not generally used to
compare between different datasets. If BIC and R2 were similar between
differing models for the same river system, the model with only one
band ratio or the least number of variables was selected. We compared
differences in CDOM between three methods (Arctic-GRO measure-
ments, LOADEST estimates, and Landsat-derived estimates) during the
ice-free season. Cross-sectional river sampling is dangerous during the
spring break-up and autumn freeze periods, so all field-collected sam-
ples from May to mid-October are assumed to be ice-free. We assumed
that rivers would be ice-free from three days after peak discharge until
October 15th. Average absorptions and concentrations for seasonal and
total ice-free periods were calculated for 2004–2006 and 2009–2012,
the common years between all three methods. Mean seasonal absorp-
tions and concentrations were averaged together for the total ice-free
period, so that seasons were given equal weight despite differences in
coverage between methods.

3. Results

3.1. DOM measurements and LOADEST modeling

CDOM absorption is a common proxy for DOC concentrations in
inland waters, including Arctic rivers (Frey et al., 2016; Osburn and
Stedmon, 2011; Stedmon et al., 2011). Using all available Arctic-GRO
data from 2004 to 2014, DOC and a375 correlate strongly across all
rivers (Fig. 3 and Eq. 3; R2= 0.88, n=248, ordinary least squares
regression):

= ∗ −CDOM 1.593 DOC 2.453 (3)

where CDOM is the absorption coefficient at 375 nm and DOC is the
concentration of DOC in mg/L, using ordinary least squares regression.
DOC ranges from 2.1mg/L C to 23.5 mg/L C with a mean of 7.6mg/L C;
CDOM a375 ranges 1.1 m−1 to 29.7 m−1 with a mean of 9.7m−1.

The ability of LOADEST to predict CDOM a375 (based on R2 values
of regression relationships) in the six Arctic-GRO rivers ranged from
0.45 to 0.89, using Model 6 (Table 1). Of these, LOADEST models for
the Ob' and Mackenzie rivers are the least predictable with R2 of 0.45

Fig. 2. Daily discharge for each river from 2000 to 2013. Blue dots indicate dates of Landsat data used in regressions between LOADEST-derived CDOM and surface reflectance. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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and 0.53, respectively. CDOM predicted by LOADEST Model 6 resulted
in R2 of 0.70–0.73 for the Yukon, Yenisey, and Kolyma, and 0.89 for the
Lena river. Here, model coefficients a0 (the intercept) and a1 (related to
discharge) are significant and a2 (natural log of discharge squared) is
non-significant for all rivers. Coefficient a3, a seasonality parameter, is
significant for the Kolyma, Lena, Mackenzie, and Yukon rivers and non-
significant for the Ob' and Yenisey. With the exception of the Ob',
coefficient a4, also a seasonality parameter, is significant for all rivers.

LOADEST modeling of DOC concentrations explain overall less
variance than the CDOM models, with the largest divergence in the
Mackenzie where R2 values drops from 0.53 to 0.31. The Lena also
shows a sizable drop, with R2 values decreasing from 0.89 to 0.74. The

Yukon River is the exception, with R2 increasing from 0.70 to 0.80
between CDOM and DOC models. Although this paper presents DOC
concentrations derived from remote sensing, we chose to use LOADEST-
derived CDOM as calibration data for remote sensing models because of
this difference in explanatory power, in addition to CDOM being a more
direct measure of the spectral characteristics of water bodies (Brezonik
et al., 2015).

3.2. Landsat regression models of CDOM and DOC

Our results indicate that CDOM, can be estimated using Landsat TM
and ETM+ data (Fig. 4), as well as DOC by applying Eq. 3 to the re-
motely estimated CDOM values. Using river-specific regressions from
Table 3, CDOM a375 from Landsat data correlates with LOADEST-de-
rived CDOM a375 with an overall R2 of 0.85. DOC estimates from
Landsat correlate with LOADEST-derived DOC with an overall R2 of
0.74. A universal regression, using all rivers grouped into one dataset,
resulted in a decreased R2 of 0.52 (Table 3). Individual rivers also de-
creased markedly in R2 using this universal approach, while RMSE in-
creased with particularly dramatic changes in the Yenisey and Yukon
rivers (Table 3; Fig. S1). Using the Landsat TOA product, instead of
surface reflectance models, also resulted in a decreased R2 and in-
creased RMSE (Fig. S2). The Lena River R2 decreased from 0.67 to 0.49,
and RMSE increased from 2.96m−1 to 3.89m−1. The Yenisey River R2

decreased from 0.84 to 0.61 and RMSE increased from 1.17 to
2.05m−1.

Although our overall ability to predict CDOM in large Arctic rivers is
comparable to other studies using Landsat (e.g., Kutser et al., 2005;
Kallio et al., 2008; Olmanson et al., 2016), regression models vary
widely between each river in terms of formulation and performance
(Table 3). The Yenisey performs best, with a R2 of 0.84 and root mean
square error (RMSE) of 1.17m−1. CDOM models for the Yenisey and
the Kolyma are the only two cases that share the same band variables, a
combination of the log-transformed green and red bands with a ratio of
green to red (Table 3). The Ob' regression also uses a ratio of green to
red, in combination with the blue band, and has a RMSE that is com-
parable to the other rivers, but its R2 is only 0.33m−1. The Yukon River
model uses the blue band, green band, and a ratio of the blue and NIR
bands and explains 75% of the variance in CDOM and RMSE of
2.33m−1. The Lena model uses natural log-transformed red and NIR
bands with a natural-log of the green to NIR band ratio, resulting in a R2

of 0.68 and RMSE of 2.96m−1. The Mackenzie River model is the only

Table 3
Landsat multispectral bands used to develop relationships between CDOM and reflectance for each river based on both river-specific and universal regressions, and the respective R2, root
mean square error (RMSE), mean absolute percent difference (MAPD) ± the MAPD standard deviation, and the range of a400 values from LOADEST input and Landsat output.

Equation coefficient LOADEST Landsat

Landsat bands a375=b0+b1(x1)+ b2(x2)+ b3(x3) R2 RMSE MAPD CDOM range CDOM range

Combinations b0 b1 b2 b3 (m−1) (%) (m−1) (m−1)

River-specific models
Kolyma ln(B2), ln(B3), B2/B3 −25.877 −73.114 71.126 46.59 0.73 1.48 17.7 ± 16.3 2.88–14.99 2.44–12.36
Lena ln(B3), ln(B4), ln(B2/B4) 74.757 23.695 −33.051 −42.469 0.67 2.96 18.6 ± 13.3 7.25–28.16 6.25–23.11
Mackenzie ln(B2), B4 93.7 −14.1 0.00938 0.53 1.45 23.4 ± 18.2 2.16–11.43 2.73–9.09
Ob' B1, B2/B3 20.979 0.0004081 −6.9707 0.33 1.21 6.1 ± 6.6 9.56–19.00 11.36–15.53
Yenisey ln(B2), ln(B3), B2/B3 −76.721 −151.4 151.24 97.766 0.84 1.17 8.8 ± 7.9 7.56–20.59 7.64–19.09
Yukon B1, B2, B1/B4 38.709 0.026741 0.03664 −17.568 0.75 2.33 28.1 ± 27.0 3.55–19.55 −0.64–15.60
All Rivers 0.85 1.84 17.2 ± 17.3 2.16–28.16 −0.64–23.11

Universal model
Kolyma 0.53 2.09 27.7 ± 25.9 2.88–14.99 0.75–11.38
Lena 0.65 4.32 19.9 ± 13.9 7.25–28.16 8.40–15.42
Mackenzie 0.41 2.88 52.9 ± 49.9 2.16–11.43 −8.80–13.13
Ob' 0.06 3.2 15.3 ± 16.1 9.56–19.00 1.11–17.85
Yenisey 0.21 2.72 21.5 ± 14.8 7.56–20.59 4.03–13.54
Yukon 0.27 4.01 44.6 ± 60.6 3.55–19.55 −7.03–16.91
All Rivers B2, B3, B2/B3 32.475 −0.0257 0.01659 −14.621 0.52 3.23 31.8 ± 38.1 2.16–28.16 −8.80–17.85

Fig. 3. Regression between measured DOC and CDOM a375, from the Arctic-GRO dataset
from 2004 to 2014. CDOM=1.59 * DOC – 2.45; R2=0.88; RMSE=2.31m−1, n=248.
Red=Kolyma, Green=Mackenzie, Orange=Yenisey, Blue= Lena, Purple=Ob',
Yellow=Yukon. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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model that does not include a band ratio, instead using the NIR and
natural log of the green band for a R2 of 0.53 and RMSE of 1.45m−1.

3.3. Spatial evaluation

CDOM in the Kolyma main stem samples fall close to the one-to-one
line, despite spanning almost 300 km along the river (Figs. 5 and 6).
CDOM estimates from tributaries of the Kolyma were less consistent,
although three observations were within 1m−1 of measured values
(Fig. 6). When converted to DOC, seven out of nine Landsat-derived
estimates were within 1.1mg/L C of measured DOC concentrations. The
Mackenzie remote sensing model, on the other hand, did not yield re-
liable estimates of CDOM or DOC across space. Although measured
CDOM a375 ranges by nearly 20m−1 in the Mackenzie, our remote
sensing model could not capture that variability. Remotely sensing
methods underestimated CDOM in the Mackenzie delta and could not
capture the range of variability observed in measured data. For the
eight samples within the delta where Landsat imagery corresponds
within 3 days± of field sampling, measured a375 averages
14.94 ± 4.29m−1 while remote sensing estimates average
5.77 ± 1.27 std. m−1. Samples of the Mackenzie main stem and major
tributaries upstream of the delta matched somewhat more closely with
measured a375 averaging 8.62 ± 2.44m−1 and estimated a375 aver-
aging 7.26 ± 0.18m−1.

3.4. Comparing measured, LOADEST, and Landsat DOM

To compare CDOM and DOC between methods (Arctic-GRO,
LOADEST, and Landsat) we only included 2004–2006 and 2009–2012,
the years when all three approaches have complete seasonal datasets
(Table 4). Discharge data for all rivers was not available in 2000 or
2013, and PARTNERS/Arctic-GRO did not sample in 2007 and 2008.
Landsat-derived CDOM estimates are available for these years where
LOADEST or Arctic-GRO have gaps, but are not considered in Table 4.
Remotely sensed estimates of seasonal CDOM and DOC show little
significant difference from either measured or LOADEST values, in most
rivers (Table 4). During freshet (May–June), average measured CDOM
and DOC are significantly higher than Landsat estimates for the Lena
and Kolyma rivers. Average LOADEST DOC during freshet on the Ko-
lyma also significantly exceeds Landsat estimated DOC. Freshet in the
Lena exhibits the largest divergence between methods for any season on
any river, with average measured CDOM and DOC exceeding Landsat
estimates by 6.61m−1 and 3.55mg/L, respectively. In the Ob' River,
average Landsat DOC concentrations in summer are significantly lower
than measured or LOADEST values. Measured CDOM in the Ob' River
during fall is significantly lower than Landsat CDOM. However,
LOADEST DOC is significantly higher than Landsat DOC for the same
season in the Ob'. During summer in the Yukon River, average CDOM
from Landsat is significantly higher than LOADEST values, and Landsat-

Fig. 4. Scatterplots of CDOM and DOC from
LOADEST compared to remote sensing esti-
mates, using river-specific regressions. The
line in both plots is one-to-one. Individual
river regressions vary, but overall CDOM is
predicted with R2= 85%, DOC with
R2= 74%. Red=Kolyma, Green=
Mackenzie, Orange=Yenisey, Blue= Lena,
Purple=Ob', Yellow=Yukon. (For inter-
pretation of the references to colour in this
figure legend, the reader is referred to the
web version of this article.)

Fig. 5. Map of CDOM a375 and DOC from remote sensing
for the Kolyma and Mackenzie rivers, with sampling sites
used for spatial evaluation. Imagery corresponds to field
campaigns (Mackenzie in June 2011, Kolyma in
June–July 2013). Red points=Kolyma, Green
points=Mackenzie. (For interpretation of the references
to colour in this figure legend, the reader is referred to
the web version of this article.)
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derived DOC is significantly different than both measured or LOADEST
values. Overall, only in four cases did average seasonal CDOM differ
significantly from measured or LOADEST values, while DOC differed
significantly in six cases (Welch's t-test, p-value < 0.05). In no instance
did CDOM or DOC values for the entire ice-free period differ sig-
nificantly between methods.

3.5. Validation using 2013–2016 Landsat imagery

In comparing measured a375 and DOC from Arctic-GRO to remotely-
sensed data from 2013 to 2016, we find that our river-specific models
are predictive, with slopes close to one (Fig. 7). R2 across all rivers
decreased to 0.67 for CDOM and 0.70 for DOC, in comparison to 0.84

for our calibration dataset (Table 2). This decrease in R2 is partially
related to sample size, as we did not use LOADEST to fill in gaps in the
Arctic-GRO database. Removing outliers from the Ob' River does not
change R2 greatly, increasing to 0.71, but the slope decreases from 1.31
to 0.83. The poor performance in predicting DOC based on remote
sensing data in the Ob' may be related to shifts in DOM quality.
SUVA254, for instance was 2.85 and 2.87 Lmg C−1 m−1 in outliers from
2014 in the Arctic-GRO dataset, but ranged from 2.49 to
4.2 Lmg C−1 m−1 during the ice-free season when all years are in-
cluded. There is no apparent relationship to month, season, or discharge
during ice-free conditions. Therefore, we do not have confidence in
using remotely-sensed CDOM as a proxy for DOC in the Ob' River.

This approach provides an entirely independent check on model

Fig. 6. Comparison of field collected CDOM
measurements and Landsat-derived esti-
mates, from samples distributed across the
lower watersheds of the Kolyma and
Mackenzie rivers. Line is one-to-one.
Grey=delta, Black=main stem,
Pink= tributary. (For interpretation of the
references to colour in this figure legend, the
reader is referred to the web version of this
article.)

Table 4
Average a375 and DOC concentrations for the ice-free period from three data sources, for 2004–2006 and 2009–2012. Seasonal averages were calculated for the entire time
period,± standard error. Total ice-free period absorptions and concentrations are averages of the seasonal values, so that equal weight is given to each season. Landsat-derived seasonal
means were compared to measured and LOADEST values using Tukey's post hoc test (p=0.05). Italics indicates significant difference from measured data and bold indicates significant
difference from LOADEST results. CDOM units are a375 m−1. DOC is in mg/L C.

Freshet Summer Fall Total Ice-free Period

CDOM DOC n CDOM DOC n CDOM DOC n CDOM DOC

Kolyma
Measured 12.1 ± 1.54 9.65 ± 0.99 14 5.70 ± 0.83 5.51 ± 0.62 6 4.00 ± 0.32 4.42 ± 0.44 7 7.25 ± 2.45 6.53 ± 1.59
LOADEST 9.42 ± 0.2 8.46 ± 0.13 172 4.95 ± 0.07 5.06 ± 0.05 434 5.21 ± 0.06 5.59 ± 0.05 280 6.53 ± 1.45 6.37 ± 1.06
Landsat 8.75 ± 0.61 7.1 ± 0.34 15 5.89 ± 0.44 5.53 ± 0.24 17 6.59 ± 0.57 5.92 ± 0.32 4 7.08 ± 0.86 6.18 ± 0.47

Lena
Measured 25.6 ± 0.87 16.3 ± 0.77 14 9.23 ± 0.76 7.41 ± 0.46 5 8.23 ± 0.31 7.26 ± 0.26 7 14.4 ± 5.62 10.3 ± 2.98
LOADEST 20.1 ± 0.29 13.2 ± 0.12 178 10.6 ± 0.11 8.46 ± 0.06 434 9.55 ± 0.07 8.18 ± 0.04 280 13.4 ± 3.34 9.93 ± 1.61
Landsat 18.97 ± 1.12 12.7 ± 0.61 10 11.3 ± 0.64 8.49 ± 0.35 23 9.77 ± 0.66 7.67 ± 0.36 12 13.3 ± 2.85 9.63 ± 1.57

Mackenzie
Measured 6.08 ± 0.94 5.47 ± 0.35 12 3.51 ± 0.51 4.57 ± 0.36 11 3.80 ± 1.17 4.10 ± 0.43 4 4.46 ± 0.81 4.71 ± 0.40
LOADEST 6.86 ± 0.15 5.66 ± 0.04 237 3.64 ± 0.05 4.61 ± 0.02 434 5.13 ± 0.08 4.25 ± 0.01 280 5.21 ± 0.93 4.84 ± 0.42
Landsat 6.01 ± 0.12 5.6 ± 0.12 31 4.22 ± 0.22 4.61 ± 0.12 25 3.8 ± 0.29 4.38 ± 0.16 6 4.68 ± 0.68 4.86 ± 0.37

Ob'
Measured 14.5 ± 0.58 9.88 ± 0.37 15 14.0 ± 0.68 11.2 ± 0.55 7 9.18 ± 1.15 9.36 ± 0.49 4 12.6 ± 1.69 10.1 ± 0.54
LOADEST 14.3 ± 0.05 9.94 ± 0.01 211 13.0 ± 0.09 10.3 ± 0.02 434 12.4 ± 0.06 10.3 ± 0.02 280 13.3 ± 0.56 10.2 ± 0.12
Landsat 14.2 ± 0.11 10.1 ± 0.06 14 13.9 ± 0.16 9.93 ± 0.09 19 13.1 ± 0.21 9.49 ± 0.12 14 13.7 ± 0.33 9.84 ± 0.18

Yenisey
Measured 17.4 ± 0.65 10.2 ± 0.31 15 6.14 ± 1.05 5.72 ± 0.59 6 9.01 ± 1.17 6.70 ± 0.72 5 10.9 ± 3.39 7.52 ± 1.34
LOADEST 16.8 ± 0.48 9.72 ± 0.14 172 8.58 ± 0.04 6.74 ± 0.02 434 8.52 ± 0.05 6.46 ± 0.03 280 11.3 ± 2.75 7.64 ± 1.04
Landsat 14.7 ± 1.25 10.4 ± 0.69 7 9.04 ± 0.26 7.26 ± 0.14 23 9.34 ± 0.55 7.43 ± 0.30 4 11.0 ± 1.83 8.35 ± 1.01

Yukon
Measured 14.2 ± 1.64 10.5 ± 0.91 15 5.25 ± 1.36 4.61 ± 0.66 8 6.55 ± 1.70 5.65 ± 1.12 4 8.66 ± 2.79 6.92 ± 1.82
LOADEST 12.6 ± 0.19 9.28 ± 0.12 254 6.01 ± 0.07 5.37 ± 0.04 434 4.75 ± 0.06 4.8 ± 0.08 280 7.78 ± 2.43 6.48 ± 1.41
Landsat 12.7 ± 9.27 9.27 ± 0.31 10 8.15 ± 0.54 6.77 ± 0.3 9 5.70 ± 0.66 5.42 ± 0.36 5 8.85 ± 2.05 7.15 ± 1.13
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performance, as previous Arctic-GRO values were used to model
LOADEST and calibrate our remote sensing data. The decrease in R2

may be partially attributable to error generated by LOADEST in our
calibration data. Additionally, there is a potential that using both
Landsat 7 and Landsat 8 to generate Fig. 8 could result in biases.
However, there was no significant difference between the two sensors
(ANOVA, p=0.72). This cross-comparison matches well with previous
findings that the two different Landsat platforms are compatible under
some conditions (Olmanson et al., 2016).

3.6. DOM during the ice-free season from Landsat data

All rivers display clear seasonal variation during the ice-free period,
with the exception of the Ob' River (Fig. 8). The Lena River varies the
most, with average DOC concentration of 12.3 mg/L C during spring
and 7.5 mg/L C in the fall. The Lena is also the only river where fall and
summer DOM differ significantly. In the Kolyma, Mackenzie, Yenisey,
and Yukon rivers, spring DOM always substantially exceeds summer
and fall. Although not always statistically significant, DOM consistently
decreases from spring to summer, and again through fall across all
rivers. These relationships hold true for CDOM and DOC. The seasonal
signal in these results is strongly linked to discharge. Rivers with tight
coupling between discharge and CDOM, such as the Lena and Yenisey,
show more robust LOADEST modeling, and a greater variability in DOM
across seasons. CDOM in the Mackenzie and Ob' rivers, in contrast,
cannot be modeled as successfully using LOADEST, and show the least

variation across the ice-free season. The lowest values in each season
come from the Mackenzie River, which also has the lowest average a375
of 5.14m−1. Although the Ob' shows little variation across seasons, it
does have the highest average a375 and DOC concentration in summer
and fall (Fig. 8).

4. Discussion

Remote sensing of CDOM in inland and coastal waters with complex
optical properties remains a challenging exercise, particularly at high
latitudes where high seasonality, limited datasets, frequent clouds and
ice cover, and high solar angles conspire to limit the applicability of
satellites. Atmospheric conditions, such as haze, aerosols, and hu-
midity, obscure the low water-leaving radiances of inland waters
(Gordon and Wang, 1994; Kutser et al., 2015), necessitating atmo-
spheric correction when retrieving optical properties of complex wa-
ters.

Indeed, of the remote sensing signal from a given lake pixel only
~10% is likely attributable to water-leaving radiance, with the re-
mainder a product of atmospheric effects and water surface char-
acteristics such as sun glint or wave action (Dörnhöfer and Oppelt,
2016) This sensitivity to characteristics such as haze, aerosols, and
humidity, necessitates reliable atmospheric correction, particularly
when using multi-spectral sensors with relatively low radiometric sen-
sitivity like Landsat 5 TM and 7 ETM+ (Lobo et al., 2015; Palmer et al.,
2015). Despite these limitations, we were able to build remote sensing

Fig. 7. Comparison of measured Arctic-
GRO samples from 2014 to 2016, and
2013 from the Mackenzie River, to CDOM
and DOC estimated from Landsat using
river-specific algorithms in Table 3. For
CDOM, Landsat-estimate= 0.98*Arctic-
GRO+0.51 (R2= 0.67, n=18,
RMSE=2.68m−1). For DOC, Landsat-es-
timate= 1.31*Arctic-GRO – 2.25
(R2= 0.70, n= 18, RMSE=1.98mg/L).

Fig. 8. Seasonal variation in DOM from
remote sensing from 2000 to 2013. Boxes
are 25th to 75th percentile. Whiskers are
1.5* interquartile range. Lines through
boxes are median, diamonds are mean.
Points are outliers. Blue= Freshet
(May–June), Green= Summer (July
–August), Yellow=Fall (September
–October). (For interpretation of the re-
ferences to colour in this figure legend, the
reader is referred to the web version of this
article.)

C.G. Griffin et al. Remote Sensing of Environment 209 (2018) 395–409

403



models to estimate CDOM absorption for the major Arctic rivers using
the USGS LEDAPS product within GEE. The use of GEE expedited
analyses, and showed that automated, cloud-based image processing
can produce high quality CDOM datasets. This remote sensing approach
more than doubles the number of ice-free observations of CDOM and
DOC per river of those available from field measurements from 2000 to
2013, filling in gap years in the measured data set (Fig. 2) and sup-
plementing the bi-monthly Arctic-GRO sampling. The increased ob-
servations are generally concentrated in the summer and fall, when
hydrological conditions are somewhat more stable. However, perma-
frost thaw and active layer depths are most extensive during late
summer and early fall (Khosh et al., 2017; Zhang et al., 1997). Given
the potential late-season interactions between rivers and permafrost in
a warming climate (Neff et al., 2006; Striegl et al., 2005; Vonk et al.,
2015), this remote sensing approach may be particularly useful for
monitoring late-season changes in DOM.

4.1. Comparing measured, LOADEST-derived, and Landsat-derived DOM

CDOM absorption in Arctic rivers can change rapidly over the
course of the ice-free season (Mann et al., 2016; Finlay et al., 2006;
Peterson et al., 1986). The targeted sampling of PARTNERS was ori-
ginally designed to address this seasonality, with a particular emphasis
on the spring freshet (McClelland et al., 2008; Raymond et al., 2007).
More recently (2012 – present), Arctic-GRO switched to a bi-monthly
sampling program that alternates between years to generate complete
monthly coverage over two-year cycles. While this has improved
overall annual coverage, it has resulted in less sampling during the
spring. CDOM estimates derived from remote sensing have the potential
to make up for this loss of spring coverage. Indeed our Landsat data
skew towards the spring: there are more scenes included in our analyses
from May–June than September–October owing to the vagaries of cloud
cover and the timing of satellite overpasses (Table 2). However, within
spring freshet, our remote sensing approach cannot target peak flow
conditions as closely as field programs can. For instance, only 10% of
the Landsat scenes observe May through the first week of June, when
discharge peaks on most rivers (Fig. 2). Early freshet samples contribute
22% of the Arctic-GRO dataset during the ice-free season. Thus, parti-
cularly on the Kolyma and Lena rivers, average CDOM absorption and
DOC concentrations estimated from remote sensing in spring tend to be
lower than from field-based measurements. LOADEST lacks this bias
towards peak flow, and Landsat results match LOADEST more closely,
with only DOC from the Kolyma significantly different between the two
methods in spring (Table 4). The significant differences between
Landsat and other methods in the Ob' and Yukon rivers cannot be easily
attributed to such seasonal biases, however. CDOM absorption and DOC
concentrations in the Ob' do not vary seasonally or annually as much as
other rivers considered here; thus, despite the statistical significance,
mean seasonal DOC in the Ob' never differs between methods> 1.25
mg/L. In the Yukon, suspended sediments may be artificially inflating
Landsat-derived estimates of CDOM in summer or fall. Despite these
anomalies, average Landsat-derived CDOM and DOC for most seasons
and across the total ice-free period for all rivers consistently reflect both
measured and LOADEST datasets.

Our Landsat-based approach increases the frequency of observations
in summer (Table 4), during which time permafrost thaw and ther-
mokarst activity are likely to be highest (Liu et al., 2015; Osterkamp
et al., 2000). While only a portion of DOM in large rivers originates in
aged permafrost soils (Raymond et al., 2007; Spencer et al., 2015), a
distinct seasonal signal indicating that permafrost carbon can be a
significant source of riverine DOM during the summer and fall (Feng
et al., 2017; Neff et al., 2006). Late season changes in concentration or
composition of organic matter could be reflective of deepening hydro-
logical flowpaths or the mobilization of permafrost carbon (Pokrovsky
et al., 2015; Striegl et al., 2005). With a nearly three-fold increase in
summer CDOM estimates using Landsat, we may be able to observe

more subtle climate-induced shifts in riverine CDOM.
Furthermore, the launch of the paired Sentinel-2 A&B satellites,

with ongoing data collection by Landsat 8 OLI, will provide an in-
creased frequency of satellite overpasses, particularly at high latitudes
owing to their polar orbiting pathways. These newer satellites were
intended to provide continuity to historical satellite records while im-
proving signal-to-noise ratios and adding specialized bands (Loveland
and Irons, 2016; Mishra et al., 2016). Recent research has shown that
Landsat 8 can be used for improved estimates of CDOM in inland waters
(Brezonik et al., 2015; Herrault et al., 2016; Olmanson et al., 2016), as
its radiometric performance has been increased from 8 bit data in
earlier Landsat sensors to 12 bit. Initial work on modeled Sentinel-2
results indicate improved sensitivity to water quality parameters, as
well (Kutser et al., 2016; Manzo et al., 2015). Future work will be ne-
cessary to link Sentinel-2 and Landsat 8 to historical imagery for CDOM
time series, although there is preliminary evidence of compatibility
(Olmanson et al., 2016), and our own data (Fig. 7, Section 3.5).

4.2. Watershed characteristics as controls on remote sensing of CDOM

The six Arctic-GRO rivers represent 67% of the Arctic Ocean wa-
tershed (Holmes et al., 2012), and vary widely in watershed char-
acteristics that influence riverine organic matter and our ability to re-
motely sense CDOM. While our overall ability to estimate CDOM and
DOC from Landsat imagery is comparable to other studies on remote
sensing of inland waters (Olmanson et al., 2016), the differences in
river-specific models may be driven by hydrological and biogeochem-
ical characteristics that vary by watershed. CDOM remote sensing
models are most robust when measured and LOADEST modeled values
vary widely across seasons, with highest absorption found during the
spring freshet. Ranges of CDOM absorption from LOADEST are widest
in the Yenisey (Table 4), which also features the strongest relationship
between remotely sensed CDOM and calibration data (Table 3) and
relatively low concentrations of TSS that may also influence optical
properties. The Mackenzie and Ob' rivers vary relatively little in CDOM
throughout the ice-free season compared to other rivers (Table 4). In
consequence of the relatively stable CDOM, the regressions lack the
power to explain the variance seen in these rivers. Despite this limita-
tion, RMSE for the Mackenzie and Ob' are comparable to other rivers
(Table 3), and group with other rivers when calibration data and re-
mote sensing estimates are plotted together (Fig. 4). Additional error in
the Mackenzie River may originate from the use of frozen CDOM
samples. Cryopreservation effects can be large within the Mackenzie
River, particularly when CDOM absorption is low (Griffin, 2016).

Many Arctic rivers are hydrologically “flashy” during the spring
freshet, with a peak in discharge followed by lower flow during the
summer (Fig. 2). DOM concentrations correlate positively with dis-
charge, and shift in source and composition across the hydrograph (Neff
et al., 2006; Raymond et al., 2007; Spencer and Aiken, 2009; Wickland
et al., 2007). However, discharge fails to explain CDOM absorption in
the Mackenzie or Ob' as it does in the other rivers. Both the Mackenzie
and Ob' have a less distinctive peak in spring discharge (Fig. 2), and
measured a375 and DOC change less over the course of the ice-free
season than in other large Arctic rivers (Fig. 8). Several watershed
features may contribute to these characteristics. The Mackenzie con-
tains Great Slave Lake, Great Bear Lake, and the inland Peace-Atha-
basca delta. These large lake systems mediate seasonal discharge, and
place a strong lake storage effect upon the Mackenzie River (Woo and
Thorne, 2003). The extensive non-permafrost peatlands in the Ob'
watershed retain large amounts of water, and may have a similar effect
on attenuating streamflow as the extensive lakes found in the Mack-
enzie (Smith et al., 2012).

Sediment loads, which influence the overall reflectance of natural
waters across the visible spectrum (Lymburner et al., 2016), also con-
tribute to river-specific relationships between remote sensing data and
CDOM concentrations. Concentrations of total suspended solids (TSS)
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generally increase with river discharge and are highest during the
spring freshet (Holmes et al., 2002). However, TSS concentrations vary
widely among the major Arctic rivers (Fig. 9). TSS concentrations peak
at ~30mg/L in the Yenisey River, whereas concentrations exceed
400mg/L in the Yukon and Mackenzie. TSS concentrations in the other
rivers are intermediate within this range. High TSS concentrations do
not necessarily interfere with our ability to estimate CDOM, but cor-
relations between CDOM and TSS (Fig. 9; Table S1) become an in-
creasingly important consideration as sediment contributions go up. In
the Mackenzie, TSS concentrations increase more rapidly relative to
increases in CDOM (slope=23.43) than any other river (Table S1),
indicating that the remote sensing signal may be more responsive to
changes in TSS than CDOM. The Yukon, in contrast, has some of the
highest CDOM levels in our dataset, and relative increases in TSS on par
with the Kolyma River despite high sediment concentrations. Few stu-
dies have addressed remote sensing of both CDOM and sediments in
waters where both are high, and teasing apart the two signals can be
difficult (Pavelsky and Smith, 2009). Algorithms relating remotely
sensed parameters to CDOM in high sediment waters can be applied
confidently within the calibration timeframe, but potential changes in
CDOM-sediment relationships may confound interpretation of remote
sensing data outside the calibration timeframe.

The results presented in Table 3 are purely empirical, and only the
Kolyma and Yenisey rivers share common band combinations. How-
ever, these differences may further inform the theoretical under-
pinnings of using satellite remote sensing to monitor CDOM, for which
we still have limited understanding (Brezonik et al., 2015). Green and
red bands appeared most frequently in our models, including a “uni-
versal” regression based on all rivers grouped together (Table 3). The
ratio of green to red reflectance is commonly used in other empirical
approaches to remote sensing of CDOM in complex waters (Brezonik
et al., 2015; Ficek et al., 2011; Kutser et al., 2005; Menken et al., 2006).
Although CDOM absorption decreases exponentially with increasing
wavelength, the functional light-paths of inland waters measured from
space are much longer than lab techniques. Thus, there is a greater
CDOM signal at longer wavelengths than might otherwise be measured
through laboratory techniques. This may explain partially why longer
wavelengths (e.g., Landsat TM and ETM+ bands 2 and 3) can still
strongly relate to CDOM absorption in UV or blue wavelengths
(350–440 nm). Furthermore, because atmospheric effects tend to be
largest in the blue region (400–500 nm), reflectance from green and red
wavelengths may be preferred in regression-based approaches (Kutser
et al., 2005).

Although it has been suggested that reflectance near 670 nm linked
to a chlorophyll-a correction in remote sensing of CDOM studies, the
low chlorophyll concentrations in many Arctic rivers indicate this may
not be the sole explanation for the inclusion of these longer wave-
lengths. Reflectance in NIR wavelengths appears in empirical models
from the Lena, Mackenzie, and Yukon rivers. NIR reflectance has long
been used to estimate TSS or suspended sediment concentrations (SSC)
in inland and coastal waters, with some indication that models may be
transferrable between systems (Long and Pavelsky, 2013; Novo et al.,
1989; Quibell, 1991). As discussed above, these rivers may be influ-
enced by TSS to varying degrees, given relative TSS concentrations and
CDOM levels.

The high sediment loads in the Mackenzie River may also influence
our ability to spatially extrapolate models based upon temporal varia-
bility (Figs. 5 and 6). The Mackenzie is the single largest exporter of
sediment to the Arctic Ocean (Holmes et al., 2002), and surface TSS
concentrations can exceed 1000mg/L in the delta during spring freshet
(Griffin and Vonk, unpublished data). In early June, the Mackenzie
floods lakes and inundates wetlands throughout the delta (Marsh and
Hey, 1989). Particulate matter may settle out or become re-suspended,
depending on water levels and velocities (Emmerton et al., 2007), while
dissolved constituents may remain more stable, thus decoupling TSS
and CDOM. The inability of our remote sensing approach to accurately
estimate CDOM at delta sites in the Mackenzie support the idea that the
model for this river may be more strongly influenced by variability in
suspended sediment. Alternatively, Our Mackenzie model may not
adequately represent CDOM conditions in the delta because they are far
outside of our calibration range: while a440 in the Mackenzie delta can
exceed 20m−1, the calibration data only ranges 2.16–11.43m−1.
However, CDOM from tributaries in the Kolyma watershed, and along a
river continuum, are estimated with better accuracy than any of the
Mackenzie delta samples. Without a larger dataset, extrapolating the
Kolyma remote sensing model to include major tributaries must be done
conservatively. However, this dataset adds to our confidence in map-
ping CDOM throughout the lower main stem of the Kolyma (Griffin
et al., 2011), and suggests that these models can be used to assess
spatial variability within some river systems. The ability to spatially
extrapolate from a limited number of ground-truthing sites remains a
key advantage of remote sensing approaches, but needs further vali-
dation before it can be applied confidently in Arctic rivers. In addition,
these methods should not yet be applied to other nearby rivers, without
further validation. Previous studies have used bio-optical models to
relate remote sensing signal to individual inherent optical properties,

Fig. 9. CDOM a375 (m−1) versus TSS (mg/L) for the Eurasian (left) and North American (right) rivers. Red=Kolyma, Green=Mackenzie, Orange=Yenisey, Blue= Lena, Purple=Ob',
Yellow=Yukon. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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e.g. CDOM, and backscatter of non-algal particles. Such studies have
even been conducted along the Mackenzie River shelf (Belanger et al.,
2008; Doxaran et al., 2012). These bio-optical models offer the ability
to differentiate between each optical property, but must be measured at
each location. Suspended sediment, for instance, can be optically dif-
ferent based on particle size, shape, and mineralogy (Novo et al., 1989).
Thus, in situ backscatter and reflectance measurements should be used
to help calibrate bio-optical models, which have not yet been performed
for most of the Arctic-GRO river systems. Additionally, multi-decadal
time series analyses may allow researchers to find climate-driven
changes in DOM fluxes or concentrations, associated with either an-
thropogenic climate change (Tank et al., 2016; Toohey et al., 2016) or
large-scale climate patterns (Fichot et al., 2013). However, these da-
tasets should be interpreted cautiously given the uncertainties inherent
in using older generation satellite platforms such as Landsat TM and
ETM+. Such uncertainties include both the complex optical relation-
ships between TSS and CDOM, and the possibility of changing CDOM
sources leading to a shift in DOC-CDOM relationships on decadal
timescales.

4.3. Remotely sensed CDOM as a proxy for other DOM characteristics

While strong relationships between a375 and DOC concentrations
have been leveraged in a variety of recent studies, it is noteworthy that
DOC and dissolved organic nitrogen (DON) are also strongly correlated
in Arctic rivers (Frey et al., 2007; Holmes et al., 2012; McClelland et al.,
2014). Riverine DON may be particularly important to coastal ecosys-
tems, as it greatly exceeds dissolved inorganic nitrogen (DIN) in these
six Arctic rivers (Le Fouest et al., 2013; Tank et al., 2012). Both bac-
terial and photochemical remineralization of DON could contribute to
production in Arctic coastal waters (Bélanger et al., 2006; Le Fouest
et al., 2013). Although beyond the scope of this study, it might be
possible to use relationships between CDOM, DOC, and DON to calcu-
late satellite-derived estimates of DON concentrations.

Remotely sensed CDOM may be a useful proxy for other DOM
characteristics as well. Stubbins et al. (2015) proposed using absorption
at 412 nm to predict dissolved black carbon (DBC) from the Arctic-GRO
rivers, with R2 > 0.97. The aromatic compounds that form DBC
strongly absorb light, explaining a mechanistic link between DBC and
CDOM. Additionally, Walker et al. (2013) showed that lignin phenol
concentrations in the Kolyma, Lena, and Yenisey rivers could be esti-
mated from a350. Lignin phenols, derived from plant matter, have been
widely used as terrestrial biomarkers in aquatic and marine systems.
These results have more recently been corroborated for all of the Arctic-
GRO rivers (Mann et al., 2016). The above methods rely upon ab-
sorption at a single wavelength in the UV-A (315–400 nm) or visible
spectrum (400–800 nm) as a proxy for different types of aromatic
compounds, and are based upon the same rivers analyzed in this ap-
plication. Although there are some differences in spectral slope within
the Arctic-GRO dataset (Walker et al., 2013), a375 correlates strongly
with a350 (R2= 0.996) and a412 (R2= 0.978). Thus, our remote sensing
estimates of a375 could potentially be used to derive concentrations of
DBC and lignins through these proxies established elsewhere. The
Arctic-GRO database provides a rare opportunity to explore the em-
pirical relationships between CDOM and labor-intensive molecular
measurements of organic matter. Extrapolating such relationships to
remote sensing of Arctic rivers should be performed cautiously.

5. Conclusions

Estimation of CDOM in the major Arctic rivers from Landsat data
provides a new tool to synoptically monitor river biogeochemistry on a
Pan-Arctic scale. We built river-specific empirical models between sa-
tellite reflectance and LOADEST-modeled CDOM over six Arctic rivers,
using 424 separate observations from 2000 to 2013. In the Kolyma,
Lena, Yenisey, and Yukon rivers, this regression-based approached

predicted CDOM with R2 values of 0.67–0.84, and RMSE values of
1.17–2.96m−1. Relationships between CDOM and remotely sensed
parameters were weaker in the Mackenzie and Ob' rivers (R2 of 0.53
and 0.33, RMSE of 1.45m−1and 1.21m−1, respectively), likely owing
to a relative lack in inherent CDOM variability for the regression
models to explain. Sediment may also have been a confounding factor,
particularly in the Mackenzie River.

The approach we have described here addresses two common issues
in remote sensing of inland waters. First, collecting field data that
corresponds with clear-sky satellite imagery – particularly in remote
regions like the Arctic – has long been a challenge to the development
of empirical relationships between CDOM and remotely sensed surface
reflectance. By using LOADEST, we were able to overcome this lim-
itation and create a year-round daily dataset. Although using this ap-
proach did introduce some uncertainty, both the LOADEST and the
subsequent Landsat-derived CDOM absorption matched well with sea-
sonally-averaged data from measured Arctic-GRO data. Secondly, using
Google Earth Engine (GEE) greatly improved the efficiency of analyses,
by allowing for the entire Landsat record at any given location to be
filtered based on cloud cover, Julian day, year, and other relevant
parameters. The capabilities of GEE have been expanding rapidly, as
new datasets and analytical methods are added, making this platform
an important new tool in remote sensing fields. The remote sensing
equations we have developed may be applied to both historical and
future Landsat imagery, with the caveat that shifts in CDOM quality
and/or TSS-CDOM correlations could alter river-specific relationships
between CDOM and remotely sensed parameters. In rivers with high
CDOM and low TSS, such as the Yenisey, it may be possible to automate
CDOM remote sensing, especially through the use of the USGS Surface
Reflectance Product (Schmidt et al., 2013) and Google Earth Engine.
Although USGS Surface Reflectance methods were not originally in-
tended to be used for remote sensing of water quality parameters, our
results show that this product is effective for such applications.

Satellite-derived CDOM will allow assessment of climate change
impacts on riverine DOM fluxes to the Arctic Ocean, and extend time
series to the 1980s in some rivers. Future research based upon the ap-
proach described here will explore climate-driven trends in CDOM
concentration and export. By applying the remote sensing algorithms
developed in this study to historical imagery, we can produce time
series of CDOM absorption and fluxes that are independent of changes
in discharge-constituent relationships. There is potential to also observe
shifts in DOC, although such estimates depend on assuming the corre-
lation between CDOM and DOC does not change through time. As re-
mote sensing of complex waters improves with new sensors, these
riverine endmembers can complement other efforts to trace terrestrial
DOM into the Arctic Ocean with ocean-colour remote sensing (Fichot
et al., 2013). The remotely-sensed data products may be further used to
monitor CDOM across watersheds or trace pulses of CDOM throughout
a river network (Herrault et al., 2016), although additional work needs
to be conducted to validate such spatial extrapolations. New sensors,
such as Landsat 8 and Sentinel-2, offer improved sensitivity for esti-
mating CDOM owing to better band placement and increased radio-
metric resolution, as well as increased frequency of observations
throughout the ice-free season. These new sensors, particularly Sen-
tinel-2 with an improved band placement for remote sensing of water
quality, could potentially be used to develop more universal, semi-
analytical algorithms that also retrieve TSS and chlorophyll. Further-
more, riverine CDOM has been strongly tied to many terrestrial bio-
markers, such as lignin, humics, and molecular weight, and thus may be
useful for remote estimations of important terrestrial-aquatic linkages.
Once established, Landsat-based approximations of CDOM provide an
important supplement to field and laboratory intensive efforts to
monitor the rapidly changing Arctic carbon cycle.
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