
Satellite-based estimates of Antarctic surface meltwater fluxes

Luke D. Trusel,1 Karen E. Frey,1 Sarah B. Das,2 Peter Kuipers Munneke,3

and Michiel R. van den Broeke3

Received 26 September 2013; revised 14 November 2013; accepted 15 November 2013; published 4 December 2013.

[1] This study generates novel satellite-derived estimates
of Antarctic-wide annual (1999–2009) surface meltwater
production using an empirical relationship between radar
backscatter from the QuikSCAT (QSCAT) satellite and melt
calculated from in situ energy balance observations. The
resulting QSCAT-derived melt fluxes significantly agree
with output from the regional climate model RACMO2.1
and with independent ground-based observations. The high-
resolution (4.45 km) QSCAT-based melt fluxes uniquely
detect interannually persistent and intense melt (>400mm
water equivalent (w.e.) year�1) on interior Larsen C Ice
Shelf that is not simulated by RACMO2.1. This supports a
growing understanding of the importance of a föhn effect in
this region and quantifies the resulting locally enhanced
melting that is spatially consistent with recently observed
Larsen C thinning. These new results highlight important
cryosphere-climate interactions and processes that are
presently not fully captured by the coarser-resolution (27 km)
regional climate model. Citation: Trusel, L. D., K. E. Frey,
S. B. Das, P. Kuipers Munneke, and M. R. van den Broeke (2013),
Satellite-based estimates of Antarctic surface meltwater fluxes,
Geophys. Res. Lett., 40, 6148–6153, doi:10.1002/2013GL058138.

1. Introduction

[2] Ice shelf thinning [Holland et al., 2011], outlet glacier
dynamics [Pritchard and Vaughan, 2007;Miles et al., 2013],
and abrupt ice shelf collapse [Scambos et al., 2000; van den
Broeke, 2005] have all been linked to surface melt that is
prevalent across coastal Antarctica [Trusel et al., 2012]. Ice
core observations from the northeast Antarctic Peninsula
(AP) in fact reveal a recent acceleration of melt intensity
to levels unprecedented within the last 1000 years [Abram
et al., 2013]. However, regional climate modeling indicates
that most Antarctic surface melt refreezes in place [Kuipers
Munneke et al., 2012a], making surface meltwater runoff a
presently minor component of the overall surface mass
balance [Lenaerts et al., 2012]. Furthermore, while basal
melting dominates observed surface height changes and

thinning across many Antarctic ice shelves [Pritchard
et al., 2012], surface melting is also integral to height
reductions [Ligtenberg et al., 2012] and thus interpretation
of the relative importance of atmospheric and oceanic forcing
in driving ice shelf change. As such, surface melt plays a
complex and coupled role in the Antarctic cryosphere and
deciphering the magnitude of its glaciological relevance and
impacts mandates a robust understanding of its dynamics
across space and time.
[3] Several methods currently exist for examining Antarctic

surface melt, each with inherent limitations. Direct assessment
of melt from ice core stratigraphy [e.g., Das and Alley, 2008;
Abram et al., 2013] and in situ surface energy balance (SEB)
observations [e.g., Kuipers Munneke et al., 2012b] provide
robust melt records but are exceedingly rare and spatially
constrained. Microwave satellites detect increases in bright-
ness temperature [e.g., Tedesco et al., 2007] or decreases in
radar backscatter [e.g., Barrand et al., 2013] during melt epi-
sodes. However, such observations may be biased by satellite
overpass timing [Picard and Fily, 2006] or sensor and algo-
rithm sensitivity [e.g., Trusel et al., 2012] and typically only
assess melt presence or absence. Coupled climate-snowpack
models can simulate meltwater fluxes over space and time
[e.g., Kuipers Munneke et al., 2012a] yet rely upon the quality
of reanalysis data used for model forcing, suffer from a lack of
independent validation data sets, and generally provide results
at spatial resolutions coarser than satellite observations.
[4] Here we develop the first quantitative, satellite-

based estimates of Antarctic-wide surface meltwater pro-
duction by utilizing radar backscatter time series from
QuikSCAT (QSCAT) calibrated with SEB-derived melt
flux observations. We explore these results in concert
with regional climate model output from RACMO2.1
(hereafter RACMO) to assess both satellite and climate
model results.

2. Methods

2.1. Satellite Melt Detection

[5] This study utilized 10 years (1999–2009) of radar
backscatter (σ0) time series from the SeaWinds scatterometer
aboard QSCAT, consisting of daily pan-Antarctic, afternoon
overpass data (1200–2000 h local time) at vertical polariza-
tion, with 4.45 km (~8–10 km effective) resolution [Long,
2010]. Satellite-derived melt detection followed the thresh-
old-based methods of Trusel et al. [2012] (see supporting
information for further details). For a variety of radar fre-
quencies, an approximately inverse linear relationship has
been documented between snowpack liquid water content
(LWC) and backscatter up to a certain LWC threshold
(~5% or greater) [e.g., Stiles and Ulaby, 1980]. Building
upon this theory are findings of significant linear relation-
ships between seasonally summed positive air temperatures
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(i.e., positive degree days) and radar backscatter during melt
[Wismann, 2000; Smith et al., 2003; Trusel et al, 2012].
Across Antarctica, Trusel et al. [2012] employed these
relationships to estimate relative melt intensity, calculated
as melting decibel days (MDD):

MDDyear nþ1 ¼ ∑
i¼day 200; year nþ1

i¼day 201; year n
MD σ0w � σ0i

� �
(1)

where σ0i is the daily backscatter for a pixel, σ0w is the mean
winter (July–September) backscatter of year n, and MD is a
binary function expressing melt status. Here, MDD and
daily backscatter reductions during melt were compared
with meltwater fluxes obtained from SEB modeling to
better assess backscatter-melt relationships and to empiri-
cally calibrate MDD with surface melt fluxes.

2.2. Melt Derived From Surface Energy
Balance Modeling

[6] Quantifying surface melt is possible by evaluating the
full SEB:

M ¼ SWnet þ LWnet þ SHFþ LHFþ Gs; if Ts ¼ 0°C

M ¼ 0; if Ts < 0°C
(2)

where M is the energy available for melting, Ts is the snow
surface temperature, SWnet and LWnet are the net shortwave
and longwave radiative fluxes, SHF and LHF are the turbu-
lent fluxes of sensible and latent heat, and Gs is the subsur-
face conductive heat flux evaluated at the surface. Here,
we utilized SEB-derived melt fluxes calculated at five
Antarctic sites: Neumayer Station [van den Broeke et al.,
2010; König-Langlo, 2013], Automated Weather Station
(AWS) 14 and AWS 15 on Larsen C Ice Shelf [Kuipers
Munneke et al., 2012b], Larsen C AWS [van den Broeke,
2005], and Pine Island Glacier AWS A. At most locations
(see supporting information for details), M was determined
using radiative fluxes observed in situ, turbulent fluxes
calculated via the bulk method, and Gs calculated by cou-
pling the SEB to a snowpack model.

2.3. Melt Derived From Regional Climate Modeling

[7] Antarctic-wide surface melt was also determined using
RACMO, which was two-way coupled to a multilayer snow
model to calculate the SEB and simulate surface melt fluxes
at a 27 km spatial resolution over 1979–2010 [Kuipers
Munneke et al., 2012a]. Here, daily output from RACMO was
annually summed (mid July to mid July), matching the austral
summer-centric QSCAT data set. Likewise, both QSCAT and
RACMO were masked using an updated version of the
MODIS-derived Antarctic coastline [Haran et al., 2005].
When coupled to a snowpack model, SEB modeling and
RACMO can simulate percolation, refreezing, and meltwater
runoff. However, as scatterometers are most sensitive to near-
surface melt [e.g., Stiles and Ulaby, 1980] and this study uti-
lized solar afternoon satellite data, this analysis limited satellite
comparisons to instantaneousmelt fluxes at the ice sheet surface
(i.e.,M in equation (2)). We emphasize these melt fluxes do not
specify the fate of melt (e.g., refreeze or runoff ), rather simply
the production and presence of melt at the ice sheet surface.

3. Results

3.1. QSCAT-SEB Comparisons

[8] At daily resolution, QSCAT melt backscatter variations
(i.e., dB below the melt threshold) show a clear response to
surface meltwater production as determined using the SEB
method (r 2 = 0.680; Figure S1 in the supporting information).
When annually summed, the relationship is far more robust:
annual surface melt fluxes explain over 95% of the QSCAT
MDD variability at Neumayer (Figure 1a). As such, we
employed the Neumayer relationship to empirically model
Antarctic-wide surface meltwater fluxes (in mm w.e. year�1)
from QSCAT MDD. We further evaluated the robustness of
this relationship by comparing calibrated QSCAT melt fluxes
and all available SEB-based observations over coincident
annual and subannual time scales and find a similarly strong
linear relationship (r 2 = 0.970; Figure 1b).

3.2. QSCAT-RACMO Comparisons

[9] Broad spatiotemporal agreement exists between QSCAT
and RACMO, with coherent mean annual melt fluxes observed
across much of Antarctica (Figure 2). The greatest surface melt
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Figure 1. (a) Calibration between annual sums of QSCAT MDD- and SEB-based melt fluxes at Neumayer Station.
(b) Evaluation of all available coincident QSCAT- and SEB-based melt fluxes across the five locations shown in Figure 2
(gray points from Neumayer calibration in Figure 1a).
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presently occurs on AP ice shelves. For example, both methods
find melt on portions of Larsen C Ice Shelf (LCIS) in excess of
400mmw.e. year�1. On ice shelves of the western AP, QSCAT
and RACMO observe similar spatial melt patterns, but QSCAT
finds generally larger mean melt fluxes than RACMO
(Figure 2). Beyond the AP, the most intense surface melt occurs
on the outermost portions of Shackleton Ice Shelf in East
Antarctica, where bothmethods indicate>200mmw.e. year�1.
Across Dronning Maud Land, both methods observe the
greatest melt on Roi Baudouin Ice Shelf (~30°E) and suggest
an apparent orographic effect producing locally enhanced melt
on inner Fimbul Ice Shelf (~0–4°E) (Figures 2 and S2).
Similarly, QSCAT and RACMO observe peak melting on
northeast Amery Ice Shelf (~150mm w.e. year�1). Generally
low melt (several tens of mm w.e. year�1) occurs on average
across ice shelves bordering the Ross and Amundsen Seas
and both methods capture anomalously extensive but low in-
tensity West Antarctic Ice Sheet melt in 2004–2005, although
RACMO simulates melt at higher elevation (>1600m) than
QSCAT (Figures 2 and S3).
[10] Interannual variations in the Antarctic-wide meltwater

volume calculated by QSCAT and RACMO over 1999–2009
are significantly correlated, although QSCAT estimates
~30 Gt year�1 greater annual melt on average (Figure 3a).
Spatially averaged melt fluxes over specific ice sheet and
ice shelf areas are also highly correlated (Figures 3b–3g).
Across LCIS, the magnitude and interannual variability of
melt fluxes empirically estimated from QSCAT are largely
reproduced by RACMO (Figure 3b). However, Wilkins Ice
Shelf is representative of an overall western AP discrepancy
between the methods. Here although moderately correlated,
QSCAT estimates an average of ~100mm w.e. year�1 greater
melt than RACMO (Figure 3c).

[11] Figure 4 shows that despite producing similar melt
fluxes for LCIS as a whole (e.g., Figure 3b), important spatial
distinctions exist between QSCAT and RACMO. Specifically,
QSCAT indicates a swath of enhanced melt across the Foyn
and Bowman Coast Inlets of LCIS (~40% greater near Mill
Inlet), whereas RACMO produces larger melt fluxes (~10%
greater) across northernmost LCIS and the remnants of
Larsen B in Scar Inlet (Figure 4). Profiles across central
LCIS highlight differences inmeltwater production and spatial
resolution (Figure 4c). In particular, QSCAT observes peak
melting on the leeward side of the APmountains that gradually
decreases toward the Weddell Sea, whereas RACMO shows
monotonically increasing melt toward the outer ice shelf, con-
sistent with trends in melt duration [Barrand et al., 2013].

4. Discussion and Conclusions

[12] Empirical estimation of Antarctic surface meltwater
production from QSCAT is supported by agreement with
two fully independent data sets generated from ground SEB
observations and regional climate modeling. SEB modeling,
although sparse, enables calibration between MDD and
melt fluxes and supports the linearity of this Antarctic back-
scatter-melt relationship across a broad range of melt condi-
tions and time scales (Figures 1 and S1). This confirmation
is important given potential complexities including the rel-
ative insensitivity of radar backscatter to melt variations at
high LWC [Stiles and Ulaby, 1980], and the backscatter re-
liance upon specific snowpack conditions [e.g., Nghiem
et al., 2001]. We note that under persistently high snowpack
LWC, continuous daily exhaustion of the backscatter
dynamic range would likely result in underestimation of
the annual melt flux using this method. However, significant

Figure 2. Plots of 10 year (1999–2009) mean surface melt fluxes from (a) QSCAT and (b) RACMO. Labeled gray dots in
Figure 2a denote locations of SEB observations (LCIS includes Larsen C AWS, AWS 14, and AWS 15). Boxes in Figure 2b
denote areas of profiles shown in Figure 3.
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agreement between QSCAT and SEB melt results (Figure 1b;
across nearly the full spectrum of melting presently experi-
enced in Antarctica) indicates such saturation is not consis-
tently met, and thus, a linear function well approximates the
annual backscatter-melt relationship across Antarctica.
Consistency between QSCAT and RACMO further validates
this finding (Figures 2 and 3). Likewise, these agreements
provide a unique resource for assessing the performance
of RACMO across broad spatial scales over Antarctica
and indicate largely reliable results from both RACMO
and QSCAT methods over 1999–2009. Nonetheless, future
in situ SEB observations across underrepresented regions of
Antarctica subject to surface melting would provide even
further confidence and utility in assessing both satellite
and climate model products.

[13] Although melt fluxes from QSCAT and RACMO
largely agree, several discrepancies exist that warrant further
discussion. First, the greater average continent-wide melt
volume of QSCAT (Figure 3a) reflects measurement of a
larger coastal and ice shelf area by QSCAT (~350,000 km2

greater) owing to its finer spatial resolution (4.45 km; e.g.,
Figure 4). Second, comparisons at Neumayer Station
(Figure S1) and beyond (Figure S3) indicate that RACMO
underpredicts melt fluxes during 2004–2005 across East
Antarctica, contributing to divergences with QSCAT. At
Neumayer, this melt underestimation appears to result from
snowfall events occurring on and just before the day of initial
melt onset (as observed by QSCAT and the in situ SEB),
which raised albedo (i.e., decreased SWnet), thus inhibiting
melt initiation and the consequential melt-albedo feedback
necessary to accurately represent seasonal surface melt
(Figure S4). Finally, on the western AP, QSCAT observed
higher mean melt fluxes than RACMO (e.g., Figure 2). In
a similar study, Barrand et al. [2013] concluded that
RACMO grid coarseness, as well as the QSCAT response
to (and lack of RACMO treatment of ) ponding, likely
resulted in RACMO underprediction of melt duration relative
to QSCAT. We also find resolution-dependent melt flux
underestimation in RACMO (e.g., the 25–30 km wide north-
ern George VI Ice Shelf ) owing to its coarse topography and
the strong inverse relationship between melt and elevation.
However, although meltwater ponding likely leads to some
further divergence between RACMO and QSCAT on the
western AP, ponds are not ubiquitous across all ice shelves
(notably Wilkins), and our pan-Antarctic analysis does not
observe similar discrepancies where surface melt features ex-
ist elsewhere (e.g., Scar Inlet and Amery Ice Shelf ). As such,
systematically lower western AP melt fluxes in RACMO (yet
consistency with QSCAT on other ice shelves of similar size,
topographic complexity, and melt feature coverage) suggest
factors other than ponding and spatial resolution may be
responsible. Potential explanations include coarse model
simulation of coastal climate on the western AP and (partic-
ularly for Wilkins and adjacent ice shelves) an insufficient
simulation of a föhn effect in the lee of Alexander Island dur-
ing particular prevailing wind directions.
[14] Across the northeastern AP and Larsen Ice Shelf, adia-

batically warmed and dried föhn winds have been linked to
higher air temperatures [Marshall et al., 2006], decreased sur-
face mass balance [van Lipzig et al., 2008], and heightened
surface melt fluxes [Kuipers Munneke et al., 2012b] and dura-
tion [Trusel et al., 2012; Barrand et al., 2013]. Our QSCAT
results uniquely reveal amplified melt fluxes across a broad
swath of interior LCIS (Figure 4) that are a persistent feature
of the satellite record (Figure S5) and accordant with the influ-
ence of a pervasive föhn impact on the SEB. RACMO at 27 km
resolution, conversely, does not show similar melt patterns
(Figure 4b) likely owing to insufficient simulation of föhn
winds as was shown to result from topographic smoothing in
coarser-grid RACMO runs [van Lipzig et al., 2008] and identi-
fied in comparisons between QSCAT and RACMO melt
duration [Barrand et al., 2013]. As much of inner and northern
LCIS has low firn air content [Holland et al., 2011], enhanced
melting across this area can lead to an expansion of existing
surface ponding (Figure S6), albedo reduction, and associ-
ated positive feedback mechanisms promoting further melt,
ponding, and ice shelf thinning. Indeed, the melt pattern
observed by QSCAT largely mirrors patterns of recent
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LCIS thinning [Pritchard et al., 2012], affirming surface
melt as an important component of LCIS surface lowering.
Accordingly, monitoring of melt, near-surface atmospheric
and firn conditions (including föhn impacts), and ice shelf
thinning across LCIS are all imperative to assessing its
potential vulnerability to melt-induced destabilization.
[15] This paper presents the first satellite-based surface

melt flux estimates for Antarctica. We find an overall agree-
ment with ground-based melt fluxes as well as those from
the regional climate model RACMO. Areas of disagreement
between satellite and climate model results point to the ne-
cessity of observing and modeling Antarctic melt processes
at sufficiently high spatial resolution. Barring such observa-
tions, important cryosphere-climate interactions and associ-
ated glaciological impacts of surface melt (e.g., föhn winds
driving Larsen Ice Shelf melt, ponding, and thinning) may
not be fully realized.
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(dashed black) and RAMP (green) [Liu et al., 2001]. Location of this region is indicated in Figure 2.
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