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Abstract:

Previous studies have drawn attention to substantial hydrological changes taking place inmountainous watersheds where hydrology is
dominated by cryospheric processes. Modelling is an important tool for understanding these changes but is particularly challenging in
mountainous terrain owing to scarcity of ground observations and uncertainty of model parameters across space and time. This study
utilizes aMarkovChainMonte Carlo data assimilation approach to examine and evaluate the performance of a conceptual, degree-day
snowmelt runoff model applied in the Tamor River basin in the eastern Nepalese Himalaya. The snowmelt runoff model is calibrated
using daily streamflow from 2002 to 2006with fairly high accuracy (average Nash–Sutcliffe metric ~0.84, annual volume bias< 3%).
TheMarkov ChainMonte Carlo approach constrains the parameters to which the model is most sensitive (e.g. lapse rate and recession
coefficient) and maximizes model fit and performance. Model simulated streamflow using an interpolated precipitation data set
decreases the fractional contribution from rainfall compared with simulations using observed station precipitation. The average
snowmelt contribution to total runoff in the TamorRiver basin for the 2002–2006 period is estimated to be 29.7 ± 2.9% (which includes
4.2± 0.9% from snowfall that promptly melts), whereas 70.3 ± 2.6% is attributed to contributions from rainfall. On average, the
elevation zone in the 4000–5500m range contributes the most to basin runoff, averaging 56.9 ± 3.6% of all snowmelt input and
28.9 ± 1.1% of all rainfall input to runoff. Model simulated streamflow using an interpolated precipitation data set decreases the
fractional contribution from rainfall versus snowmelt compared with simulations using observed station precipitation. Model
experiments indicate that the hydrograph itself does not constrain estimates of snowmelt versus rainfall contributions to total outflow
but that this derives from the degree-day melting model. Lastly, we demonstrate that the data assimilation approach is useful for
quantifying and reducing uncertainty related to model parameters and thus provides uncertainty bounds on snowmelt and rainfall
contributions in such mountainous watersheds. Copyright © 2013 John Wiley & Sons, Ltd.
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INTRODUCTION

Growing evidence indicates that the low-latitude mountain-
ous cryosphere is undergoing change owing to recent
warming (IPCC, 2007; Yao et al., 2012). Geographic areas
where the water cycle is dominated by snowmelt hydrology
are expected to be more susceptible to climate change, as it
affects the seasonality of runoff (Barnett et al., 2005; Adam
et al., 2009). The Hindu Kush-Himalaya (HKH), regarded
as the ‘water towers’ of Asia, is one such critical region as it
nourishes several of the major Asian watersheds through
perennial rivers such as the Ganges, Indus and Brahmaputra
(Messerli et al., 2004). Most recent research analyzing
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tropospheric temperatures from the longest available record
of microwave satellite measurements reveals widespread
pre-monsoonal and mean annual warming over the HKH
region at a rate of 0.21± 0.08 °C/decade (Gautam et al.,
2010). Regional climate projections by the Intergovern-
mental Panel on Climate Change (IPCC, 2007) indicate
Central Asia may warm by a median temperature of 3.7 °C
by the end of the 21st century, with warming over high
altitudes across the HKH (Panday et al., in review). There is
an increasingly large body of evidence of a glacio-
hydrological response along the east–west transect of the
HKH corresponding to the these climatic changes, with
glaciers in the Eastern Himalaya exhibiting retreat and
negative mass balance and glaciers in the Karakoram and
northwestern Himalaya exhibiting a positive mass balance
over the last few decades (Bolch et al., 2012; Yao et al.,
2012). Such climate-driven responses of mountainous river
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hydrology may pose significant challenges for this region.
Despite its regional importance and vulnerability to climate
change, there is uncertainty associated with the physical
processes that control runoff generation at high altitudes
(Bolch et al., 2012; Pellicciotti et al., 2012) and subse-
quently with the rates and magnitude of climate change
impacts on snow cover and snowmelt hydrology.
Water resource management and the evaluation of

impacts of climatic change require quantification of
streamflow variability. Hydrological models provide a
framework to investigate these relationships and subse-
quently use a scenario approach to evaluate projections of
hydrological variables (Maurer et al., 2009). The assessment
of hydrological impacts of climate change is particularly
challenging in mountainous environments as they constitute
complex hydrological systems owing to extreme heteroge-
neity in vegetation, soils, topography and spatially and
temporally varying snow cover and snowmelt patterns (Gurtz
et al., 2005; Panday et al., 2011). Continued efforts in
hydrological modelling of snow and glacier melt in the HKH
regionmostly through conceptually lumped, semi-distributed
(rather than physically based models) have provided baseline
patterns of spatiotemporal patterns of precipitation and runoff
at very large scales (Bookhagen and Burbank, 2010;
Immerzeel et al., 2010). However, poor accessibility and
scarcity of adequate network of hydrometeorological stations
at high altitude regions still remain a major impediment to
runoff modelling. As a result, only a few studies have
explored snowmelt runoff models at the catchment or river-
basin scale in this region (Braun et al., 1993; Shrestha et al.,
2004; Akhtar et al., 2008; Tahir et al., 2011).
Parameterization is usually challenging owing to scarcity

of data in mountainous regions such as the HKH, and a
sound understanding of the snowmelt hydrology needs to be
emphasized prior to assessment of water resources in a
changing climate. Several catchment-scale and basin-scale
modelling studies have addressed the glacio-hydrological
processes in the Himalayan region (Konz et al., 2007;
Akhtar et al., 2008; Butt and Bilal, 2011; Immerzeel et al.,
2011; Tahir et al., 2011). A majority of these studies have
adopted parameter values from the literature without
rigorous calibration and without quantifying how parameter
uncertainty influences modelled results. Transfer of param-
eters across space and time in hydrological modelling can be
problematic, particularly in conceptual models of snowmelt
when parameters either do not have a physical meaning or
are not easily measurable (Sun et al., 2012). In order to
address the issues of parameterization and model uncertain-
ty, data assimilation methods are typically applied in
hydrology to integrate different datasets, combine model
outputs with observations, update hydrological models,
quantify model uncertainties and sensitivity and/or improve
model accuracy (Beven and Freer, 2001; Clark et al., 2006).
Data assimilation can be viewed as a method to use
Copyright © 2013 John Wiley & Sons, Ltd.
observations to constrain models with the goal of providing
better understanding of the underlying processes
(McLaughlin et al., 2005). The Bayesian approach in
hydrological applications allows to systematically incorpo-
rate prior information on model parameters in the data
assimilation framework (Zobitz et al., 2011) and to compute
probability distributions of modelled outputs and character-
ize uncertainty in the model, usually through Monte Carlo
simulation (Mishra, 2009). This provides a means of
objectively and quantitatively diagnosing the parameters
and processes to which a model is most sensitive and from
which one can learn. Few studies have emphasized the need
for parameterization in the Himalayan region and have
performed extensive calibration (Konz et al., 2007;
Immerzeel et al., 2011; Pellicciotti et al., 2012) and
validation with additional data sets such as glacier mass
balances and remotely sensed snow cover. Pellicciotti et al.
(2012) also emphasized that an assessment of the internal
consistency of the model is important owing to the problem
of multiplicity of parameter sets or equifinality.
In addition to parameter uncertainty, sensitivity of

hydrological models to input data such as precipitation
also needs to be evaluated particularly in complex
topography and high elevations. Hydrological models in
mountainous regions with scarce observations are usually
forced with precipitation data located at lower altitudes,
which can introduce added uncertainty. Satellite-derived
precipitation estimates and interpolated rain-gauge obser-
vations have been used in other studies as inputs to a
snowmelt runoff model (SRM) instead of gauged precip-
itation. Bookhagen and Burbank (2010) used improved
Tropical Rainfall Measuring Mission rainfall estimates to
characterize the spatiotemporal distribution of rainfall,
snowfall and evapotranspiration across the Himalayan
region, whereas Tahir et al. (2011) successfully used
interpolated daily precipitation data to simulate snowmelt
hydrology in the Hunza River basin.
A thorough assessment of hydrologic processes,

patterns and trends requires minimization of uncertainties
in modelling and available input data. The objective of
this study is to examine spatial and temporal variations in
snowmelt contributions to runoff in the Hindu Kush-
Himalayan region and Tamor River basin by using a data
assimilation approach that both combines available input
data with a degree-day based SRM and estimates model
parameters by using a Markov Chain Monte Carlo
(MCMC) technique. Additionally, we investigate and
evaluate the performances of the SRM when driven by
observed precipitation as well as interpolated gridded
precipitation data. We demonstrate how a data assimila-
tion approach can be coupled with a SRM to investigate
the issues of model parameter sensitivity and uncertainty
and improve performance in a data-scarce basin in the
Eastern Himalaya.
Hydrol. Process. (2013)



Figure 2. Area-elevation curve for the Tamor River basin

APPLICATION AND EVALUATION OF A SNOWMELT RUNOFF MODEL IN THE HIMALAYA
METHODS

Study area

This geographic domain of this study is the upstream
portion of the Tamor River basin in the Eastern Himalaya
of Nepal (Figure 1). The Tamor basin covers an area of
4274 km2, with an elevation range of 422 to 8505m
(Figure 2). The Tamor River, which is one of the major
tributaries of the Sapta Koshi River, flows between high
peaks such as Kanchenjunga (8586m) and Everest
(8848m) on gorges reaching depths of 2000m. Precip-
itation for the region is highly seasonal and concentrated
during the summer monsoon months (June to September)
(Figure 3). The upper reaches of the basin are snow
covered and glaciated, contributing melt water to
streamflow.

Hydrometeorological data

Hydrometeorological measurements for the Tamor
River basin in the Eastern Himalaya were acquired from
the Department of Hydrology and Meteorology, Nepal.
Daily temperature data at Taplejung station (27.35°N,
87.67°E at 1732m elevation) and daily precipitation data
measured at Lungthung station (27.55°N, 87.78°E at
1780m elevation) in the Taplejung district were used for
the hydrological modelling (Figure 1). Discharge data
measured daily from 2002–2006 for the Tamor River at
Majhitar station (27.15°N, 87.71°E at 533m elevation) were
used for calibration. The Tamor basin was delineated at the
Majhitar station using the 90m digital elevation data
Figure 1. Location and topography of the Tamor

Copyright © 2013 John Wiley & Sons, Ltd.
acquired from the Consultative Group on International
Agricultural Research –Consortium for Spatial Information.
The basin was divided into four zones, and the zonal mean
hypsometric elevation (Figure 2) was used as the elevation
to which base station temperatures were extrapolated for the
calculation of zonal degree days (Table I).

Moderate Resolution Imaging Spectroradiometer (MODIS)
snow cover

Satellite-derived snow cover is the most efficient and
readily available input for snowmelt runoff modelling.
Snow cover was derived using the MODIS/Terra Snow
River basin in the eastern Nepalese Himalaya

Hydrol. Process. (2013)



Figure 3. Average monthly streamflow (m3/s) and total monthly
precipitation (mm) from 1996 to 2006 at Majhitar station

Table I. Elevation zone, elevation range, mean elevation and
zonal area for the four zones of the Tamor River basin

Elevation zone
Elevation
range (m)

Mean elevation
of zone (m)

Zonal
area (km2)

1 533–2500m 1685.9 1355.5
2 2500–4000m 3208.1 1111.3
3 4000–5500m 4764.3 1297.9
4 >5500 5988.8 509.2
Total basin — — 4273.8
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Cover 8-Day L3Global 500mGrid (MOD10A2;Hall et al.,
2006) and updated every eight days using a snow depletion
curve. TheMODIS snow cover is based on a snowmapping
algorithm that uses at-satellite reflectance in MODIS bands
4 (0.545–0.565μm) and 6 (1.628–1.652μm) to compute the
Normalized Snow Difference Index (Hall et al., 2002). A
pixel will be mapped as snow if the Normalized Snow
Difference Index≥ 0.4 and MODIS band 2 (0.841–
0.876 μm) > 11%; however, if the MODIS band 4
reflectance is < 10%, the pixel will not be mapped as snow
even if the other criteria are met. The MODIS product
distributed through the National Snow and Ice Data Centre
was acquired for the scene h25v06, covering the study
region from 2002 to 2006. The MODIS images were
reprojected to Universal Transverse Mercator zone 45
projection system, and the Tamor River basin area was then
extracted to assess the fraction of snow cover for different
altitudinal zones. Average snow cover was estimated by
interpolating linearly between the previous and next
available cloud free images for days with cloud cover
following Tahir et al. (2011). The conventional depletion
curves were derived for each elevation zone using the 8-day
snow cover data, which provide the input to the SRM as the
decimal portion of snow-covered area for each day.
Copyright © 2013 John Wiley & Sons, Ltd.
Asian Precipitation – Highly Resolved Observational
Data Integration towards Evaluation (APHRODITE)
precipitation data

Spatially representative gridded precipitation data are also
used to drive a snowmelt runoff model, as valley stations
may not be representative for basin precipitation. The
APHRODITE of the water resources project has compiled a
daily gridded precipitation dataset covering 1951–2007
period by analyzing rain-gauge observation data across Asia
(Yatagai et al., 2009). The APHRODITE data used in this
research (APHRO_MA_V1003R1) have a 0.25× 0.25°
gridded spatial resolution, which was interpolated from
meteorological stations throughout this region. Whereas
satellite data consistently underestimate or overestimate the
amount of precipitation, particularly in the monsoon season
(Duncan and Biggs, 2012), APHRODITE data have been
shown to provide the best precipitation estimates in most
regions except at high elevations where accuracy of this data
set is limited (Andermann et al., 2011). We used the basin-
averaged APHRODITE precipitation as input to the SRM
assuming it to be constant across elevation zones. Themodel
was run using APHRODITE precipitation data to determine
the reliability of the dataset for snowmelt runoff modelling
in the Tamor River basin.

Snowmelt runoff modelling

Modelling of stream discharge was based on the SRM
developed by Martinec et al. (2008). SRM is a conceptual,
deterministic, degree-day hydrological model that simulates
and forecasts daily runoff resulting from snowmelt and
precipitation fromhydrometeorological input data. Themodel
was designed for streamflow modelling in basins where
snowmelt is a major contributor, and more recently, it has
been applied for evaluation of impacts of climate change on
seasonal snow cover and runoff (Immerzeel et al., 2010).
SRM has been applied to basins ranging from 0.76 to
917444km2 and across elevation ranges from 0 to 8840m in
over 100 basins in 29 different countries (Martinec et al.,
2008). This model was chosen in this study to assess
snowmelt hydrology owing to its minimal data requirements
and transferability to a variety of geographic regions. On the
basis of the input of daily temperature, precipitation and snow-
covered area values, SRM computes the daily streamflow as

Qnþ1 ¼ ∑½Csznazn Tn þ ΔTznð Þ Szn
þCrzn PznÞ Az 10000=86400ð Þ 1� knþ1ð Þ

þQn knþ1;

(1)

knþ1 ¼ xQy
n; (2)

where Q (m3/s) is discharge at day n+1, C is the runoff
coefficient to snowmelt (Csn) and to rain (Crn) for each zone
Hydrol. Process. (2013)



APPLICATION AND EVALUATION OF A SNOWMELT RUNOFF MODEL IN THE HIMALAYA
(subscript z), a (cm/°C/day) is the degree-day factor,
T +ΔT (°C) are the degree days, P (cm) is the precipitation
per day, A (km2) is the area of the basin, S is the fractional
snow cover and k is the discharge recession coefficient. The
daily average streamflow on day n+1 is computed by
addition of snowmelt and precipitation that contributes to
runoff with the discharge on the preceding day. The
snowmelt of the preceding day is a product of the degree-
day factor (a), zonal degree days (T+ΔT) and the snow-
covered area percentage (S). The snowmelt runoff coefficient
(Cs) and the zonal area (A) are further multiplied with the
previous product to compute the percentage that contributes
to runoff. Similarly, the product of the rainfall runoff
coefficient (Cr) and the zonal area (A) determines the
precipitation contribution to runoff. The recession coefficient
(k) is also an important parameter as it describes the structure
of the falling limb of the hydrograph and correspondingly
determines the proportion of dailymelt water production that
appears immediately in the runoff. This is obtained with
analysis of historical discharge data based on Equation 2,
where parameters x and y are derived by analyzing discharge
on a given day as a function of the value on the previous day.
A critical temperature is used to determine whether a

precipitation event is rain or snow over different parts of the
basin. When precipitation is determined to be snow, its
contribution to runoff depends onwhether it falls on a snow-
covered or previously snow-free area. Snowfall on snow-
covered areas is assumed to become part of the seasonal
snowpack, its depth is not tracked further, and its
contribution to runoff is determined by the snow depletion
curve. Daily snowmelt depth from snow-covered areas is
determined on the basis of degree days and a factor that
converts this to mass release, qualitatively representing the
maximum potential melt given the energy input. In contrast,
snow falling as precipitation over snow-free areas is
accumulated until the next day warm enough to produce
melting at which time it is depleted on the basis of the
degree-days approach. During the winter half year
(October–March), the model cancels any existing storage
of preceding temporal snowfalls when snow cover is
maximum such that snow on previously snow-free areas
becomes part of the seasonal cover. When precipitation is
considered to be rain during the cold season, rainfall runoff
contributes to total runoff only from the snow-free area, and
the rainfall depth is reduced by the ratio of snow-free area to
zonal area. At a later stage during the season, which is set to
April 1, rain falling on snow-covered areas is allowed to
fully contribute to runoff such that rain from entire zonal
area is accounted. The SRM approach estimates fractional
contributions to total discharge from (1) daily snowmelt
from the snowpack for each elevation, (2) the melt of
precipitation delivered as snow but to areas described as
snow-free at the time of snowfall and (3) zonal rainfall.
Contributions of each to total river flow are estimated prior
Copyright © 2013 John Wiley & Sons, Ltd.
to accounting for losses via runoff coefficients, introducing
an implicit assumption that fractional contributions to runoff
are proportional to the relative abundance of each input.
Equation (1) is applied to each zone of the basin, and total

discharge is computed as sum of all zonal discharges. The
SRM structure as applied in this study assumes a time lag
between the daily temperature cycle and the resulting
discharge cycle of 18 h. The use of this time lag is supported
by the expected relation between lag time and basin size as
shown in a SRM intercomparison report by the World
Meteorological Organization (1986). Although the time lag
parameter can be adjusted to improve synchronization of
simulated and observed peaks of average daily flows,
calibration of the recession coefficients provides a similar
effect (Martinec et al., 2008). The parameters for runoff
coefficients, lapse rate, critical temperature, recession
coefficient and degree-day factors reflect characteristics at
a basin scale and are determined in this studywith anMCMC
data assimilation bymaximizing the fit between the observed
and modelled streamflows. The modelled streamflow is
assessed for accuracy using the Nash–Sutcliffe (NS) statistic
and the volume difference (Dv), where volume difference
demonstrates bias. (Supplementary information, A)
(Martinec et al., 2008).

Model calibration using MCMC optimization

A data assimilation technique known as aMCMC routine
(Zobitz et al., 2011) was used to explore the parameter
spaces in the SRM. The applicability of Bayesian methods
in hydrological studies has increased owing to their use in
parameter estimations and uncertainty assessments (Smith
and Marshall, 2008). The MCMC algorithm is one of
several data assimilation techniques and uses theMetropolis
Hastings algorithm (Metropolis et al., 1953), which
iteratively adjusts the model parameters to yield the best
match between the observed and modelled streamflow. The
output provides a set of accepted parameter values and
information about the posterior distributions of the
parameters consistent with the prior information, model
structure and observations. Additional details of theMCMC
algorithm used for optimization are described more fully in
Supplementary information, B and in Zobitz et al. (2011)
and Braswell et al. (2005).
Based on the literature and range of parameter values used

in other snowmelt runoff models in the HKH region
(Immerzeel et al., 2010; Butt and Bilal, 2011; Tahir et al.,
2011), we first specified prior ranges for the parameters.
Table II shows the parameterswith the prior ranges thatwere
assigned seasonally or annually across different elevation
zones. Seasonally varying parameters were optimized for
the snowmelt and monsoon period (June–August) and the
snow accumulation and dry period (September–May).
Snowmelt and rainfall runoff coefficients were varied
seasonally and by elevations informed by Tahir et al. (2011)
Hydrol. Process. (2013)



Table II. Initial parameter ranges used for Markov Chain Monte Carlo data assimilation

Parameter
Parameter ranges across each elevation zone

Zone 1
(533–2500m)

Zone 2
(2500–4000m)

Zone 3
(4000–5500m)

Zone 4
(>5500m)

Snow runoff coefficient June–August 0.3–0.8 0.3–0.8 0.3–0.8 0.3–0.8
September–May 0.3–0.8 0.3–0.8 0.3–0.8 0.3–0.8

Rainfall runoff coefficient June–August 0.3–0.8 0.3–0.8 0.3–0.8 0.3–0.8
Sep–May 0.3–0.8 0.3–0.8 0.3–0.8 0.3–0.8

Degree-day factor (cm/°C/day) Annual 0.3–0.6 0.3–0.6 0.5–0.9 0.5–0.9
Lapse rate (°C/100m) Annual 0.5–0.7
Critical temperature (°C) Annual 0.0–2.0
x coefficient Annual 0.9–1.4
y coefficient Annual 0.0–0.25

Snowmelt and monsoonal months are June–August, and September–May is the snow accumulation and dry period. Lapse rate, critical temperature and x
and y coefficients are not varied across elevation zones.
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and were assigned equal prior parameter ranges. Although
degree-day factors tend to vary with different seasons,
climate and surfaces, under similar conditions they are
expected to increasewith increasing elevation (Hock, 2003).
Similar to previous studies (Butt and Bilal, 2011; Tahir
et al., 2011), which utilize a degree-day factor that increases
with elevation, we also increase the parameter range
gradually across elevation zones. The elevation zone greater
than 5500m, which are glacier and ice covered are assumed
to have a higher degree-day factor as the values tend to be
considerably higher for ice compared with snow (Hock,
2003). Parameters such as lapse rate, critical temperature
and x and y coefficients were calibrated annually. Other
studies using SRM have used a similar variation of
parameters. Although most parameters can potentially vary
across elevations and seasons, increasing parameter sets
increase potential ranges of parameter values and thereby
increase uncertainty (Seibert, 1997). For this study, we
implemented theMCMC technique using three chains, each
of which consisted of 10 000 iterations. The best parameter
values from these chains were used in the final set of 10 000
iterations, which is used to determine the parameter
distributions. The range of parameter values was deliber-
ately set to be large at first to examine if realistic parameter
values were selected by the MCMC technique. If the
posterior parameter distributions were less plausible, the
parameter ranges were logically constrained by literature
values to be more realistic. The snowmelt and rainfall runoff
coefficients were constrained in the ranges specified in
Table II based on Tahir et al. (2011) and Butt and Bilal
(2011), degree-day factor ranges were specified on the basis
of Hock (2003), and prior ranges for lapse rate and critical
temperature were specified from Tahir et al. (2011) and Butt
and Bilal (2011). The SRM was run via MCMC with prior
parameter ranges as specified in Table II for the hydrological
years 2002 to 2006.
Copyright © 2013 John Wiley & Sons, Ltd.
Model sensitivity and uncertainty

In addition to model calibration, we also carried out
several experimental runs. The model was allowed to
calibrate via MCMC by setting the snowmelt runoff
coefficients to zero such that snowmelt contributions were
neglected in the simulation of the hydrograph. Similarly, the
rainfall runoff coefficients were also set to zero such that
rainfall contributions were excluded in the final simulation of
the hydrograph. In addition to these experiments, we
conducted additional sensitivity and uncertainty analyses
via ensemble streamflow simulations (1000 runs) to identify
parameters that control model performance and uncertainties
in modelled streamflow and total input contributions.
Parameter sensitivity and uncertainty in streamflow in the
time history were analyzed as 5% and 95% confidence
intervals of the ensemble runs. First, we generated an
ensemble of model runs (‘best ensemble’ hereafter) from the
posterior distribution of accepted parameter sets fromMCMC
that represent the most likely set of parameters. Second, the
sensitivity to parameters was tested by perturbing the
distribution of a parameter by some amount and computing
the corresponding changes in model output while preserving
the distribution of other parameters. This is performed in this
study by randomly drawing from the altered distribution of
each parameter (e.g. ±10% from the mean value of a
parameter from the posterior distribution) to generate
ensemble runs. This allows quantifying the effects of each
parameter or a combination of parameters on model output
and on total input contributions to streamflow by providing
uncertainty bounds on the output statistics. Third, an ensemble
of parameter sets was generated by randomly sampling from
the cumulative distribution curve constructed from the
posterior distribution of each parameter. The ensemble model
simulation uses the full range of parameter variations and
combinations and thereby provides overall uncertainties in the
choice of model parameters generated from MCMC.
Hydrol. Process. (2013)



APPLICATION AND EVALUATION OF A SNOWMELT RUNOFF MODEL IN THE HIMALAYA
RESULTS

Summary of meteorological parameters

Long term annual temperatures (1970–2006) at the
Taplejung station averaged 16.3 °C, whereas average winter
and summer temperatures were 10 °C and 21.3 °C,
respectively. Mann–Kendall tests indicate significant
(p< 0.05) positive trends in both annual maximum and
average temperatures for the Taplejung station during this
period. Average annual precipitation at the Lungthung
station was ~2484mm for the 1996–2006 period. On
average, approximately 76% of the precipitation is received
during the summer monsoon. The monthly streamflow for
the Tamor River basin at the Majhitar station along with the
total monthly precipitation at Lungthung station indicates a
fingerprint of monsoonal precipitation in the Eastern
Himalaya from June to September (Figure 3). Average
streamflow measured at the Majhitar station averaged
256.2m3/s annually during the same period, whereas the
monsoon months had an average streamflow of 573m3/s.
Snow cover depletion curves for the Tamor River basin
indicate that the highest elevation zone (above 5500m) had
a maximum ~85% snow-covered area for the 2002–2006
period, dropping to ~73% during summer (Figure 4). The
elevation zone between 4000 and 5550m had an annual
(a)

(c)

(

Figure 4. Snow cover depletion curves from theModerate Resolution Imaging S
Tamor River basin from 2002 to 2006 in (a) zone 2, elevation range from 2500–4

range greater t

Copyright © 2013 John Wiley & Sons, Ltd.
maximum snow cover of ~40% with summer zonal snow
coverage falling to ~12%. Elevations up to 4000m had on
average ~9% annual maximum snow cover.

Model parameterization

When the prior ranges of the parameters were deliberately
set to be large, the model calibrated well with a good fit
between the observed and modelled streamflow; however,
this also resulted in several modelswith similar performance
and physically implausible coefficients. Logically cons-
training the prior parameter ranges provided models with
better fit and parameters that were physically plausible when
varied across seasons and elevations. The posterior
distributions of parameters after the MCMC optimization
for all parameters for the 2002–2003 hydrological years are
shown in Figure 5.When themodel was optimized using the
MCMC approach, some of the most sensitive parameters
(such as x and y coefficients, critical temperature and lapse
rate) exhibited a narrow, unimodal distribution with their
ranges significantly reduced from the initial parameter
ranges. The x and y coefficients required to compute the
recession coefficient were the most sensitive parameters, as
they determined the structure of hydrograph recession and
corresponding proportion of daily melt water that appeared
b)

pectroradiometer 8-daymaximum snow cover 500-m resolution product in the
000m, (b) zone 3, elevation range from 4000–5500m and (c) zone 4, elevation
han 5500m.

Hydrol. Process. (2013)



Figure 5. Posterior parameter distributions for the 2002–2003 hydrological years as histograms

P. K. PANDAY ET AL.
immediately in the runoff. This shows that the MCMC
approach performs well in constraining the most sensitive
parameters of the model. Once a narrow posterior
distribution is established for the sensitive parameters
during the MCMC approach, changing other parameters
does not result in a significant increase in model
performance. Therefore, some of the remaining parameters
such as snowmelt and rainfall runoff coefficients exhibited
broad posterior distributions, and large standard deviations
where good simulations of the observed streamflow were
obtained over broad ranges (Figure 5 and Table III). The
posterior distributions of runoff coefficients for both rainfall
and snowmelt are comparable across types of precipitation
and all simulated years. These coefficients represent the
fraction of liquid water, from either snowmelt or rainfall,
Copyright © 2013 John Wiley & Sons, Ltd.
that contributes to runoff and are expected not to vary as
much across types of precipitation. Some of the observed
differences in these coefficients within a single zone could
be a result of the trade-off among parameters after the most
sensitive parameters have been constrainedwell. Inadequate
precipitation data from higher elevations zones in the
mountainous regions further hindered our ability to
constrain the runoff coefficients. Parameter estimates tend
to be stable across years, though Tcrit showed large
variation, but also had a large spread. Degree-day factor
estimates tended to be the highest for elevations greater than
4000m (zones 3 and 4), which had the highest fraction of
snow-covered area. The peaks in posterior distributions for
the degree-day factor correspondingly rise from zone 1 to
zone 3 elevation ranges.
Hydrol. Process. (2013)



Table III. Mean and standard deviation of parameters from the posterior distribution

Parameter
Mean and standard deviation of parameter across zones

Year
Zone 1

(533–2500m)
Zone 2

(2500–4000m)
Zone 3

(4000–5500m)
Zone 4

(>5500m)

Cs June–August 2002 0.55 ± 0.15 0.59 ± 0.13 0.72 ± 0.07 0.56 ± 0.13
2003 0.46 ± 0.13 0.44 ± 0.11 0.47 ± 0.12 0.52 ± 0.15
2004 0.54 ± 0.14 0.54 ± 0.14 0.68 ± 0.11 0.55 ± 0.14
2005 0.55 ± 0.14 0.55 ± 0.15 0.69 ± 0.11 0.55 ± 0.15

September–May 2002 0.58 ± 0.14 0.61 ± 0.11 0.59 ± 0.13 0.54 ± 0.15
2003 0.60 ± 0.14 0.56 ± 0.13 0.71 ± 0.07 0.56 ± 0.15
2004 0.70 ± 0.09 0.71 ± 0.07 0.67 ± 0.11 0.54 ± 0.14
2005 0.59 ± 0.14 0.43 ± 0.11 0.40 ± 0.0/8 0.54 ± 0.14

Cr June–August 2002 0.73 ± 0.05 0.74 ± 0.05 0.69 ± 0.09 0.55 ± 0.15
2003 0.67 ± 0.11 0.56 ± 0.13 0.54 ± 0.15 0.54 ± 0.14
2004 0.71 ± 0.05 0.68 ± 0.09 0.59 ± 0.14 0.55 ± 0.14
2005 0.76 ± 0.04 0.74 ± 0.08 0.76 ± 0.05 0.56 ± 0.14

September–May 2002 0.69 ± 0.07 0.68 ± 0.09 0.65 ± 0.10 0.55 ± 0.14
2003 0.37 ± 0.07 0.43 ± 0.09 0.40 ± 0.08 0.54 ± 0.14
2004 0.71 ± 0.07 0.70 ± 0.08 0.54 ± 0.14 0.56 ± 0.14
2005 0.69 ± 0.07 0.70 ± 0.08 0.72 ± 0.07 0.51 ± 0.13

a Annual 2002 0.48 ± 0.08 0.50 ± 0.0 0.61 ± 0.08 0.68 ± 0.102
2003 0.42 ± 0.08 0.41 ± 0.08 0.79 ± 0.0 0.69 ± 0.11
2004 0.53 ± 0.05 0.53 ± 0.06 0.81 ± 0.05 0.70 ± 0.`2
2005 0.45 ± 0.09 0.44 ± 0.09 0.80 ± 0.08 0.71 ± 0.12

LR Annual 2002 0.64 ± 0.01
2003 0.51 ± 0.01
2004 0.68 ± 0.01
2005 0.54 ± 0.01

Tcrit Annual 2002 1.26 ± 0.28
2003 1.16 ± 0.49
2004 1.83 ± 0.13
2005 0.94 ± 0.62

x coefficient Annual 2002 1.34 ± 0.03
2003 1.26 ± 0.01
2004 1.29 ± 0.02
2005 1.11 ± 0.01

y coefficient Annual 2002 0.08 ± 0.01
2003 0.06 ± 0.01
2004 0.07 ± 0.01
2005 0.03 ± 0.01

Cs, snowmelt runoff coefficient; Cr, rainfall runoff coeficient; a, degree day factor; LR, lapse rate.

APPLICATION AND EVALUATION OF A SNOWMELT RUNOFF MODEL IN THE HIMALAYA
The SRM is usually calibrated manually where known
ranges of parameter values are maintained while changing
other parameters by trial and error. This type of calibration
can be inefficient in exploring the parameter space and
resulted in an average NS statistic of 0.64 and volume
difference of 10% across all simulated years for this study.
Model calibration using MCMC optimization had a greater
overall improvement with NS statistic of ~0.84 averaged
across all simulated years. Figure 6 (a, c, e and g) shows the
modelled streamflow against observed streamflow using the
MCMC approach for four hydrological years (utilizing
observed precipitation at the Lungthung station). The SRM
is able to capture the daily streamflow in the annual
hydrology of the basin; however, the model underestimates
high discharge events, particularly during the monsoonal
Copyright © 2013 John Wiley & Sons, Ltd.
months. Across all simulated years, the observed and
modelled streamflow show a linear association with some
bias during high discharge periods [Figure 6 (b, d, f and h)].
The model simulated streamflows have a higher NS statistic
in the years where the summer peak discharge is lower
relative to other years (Table IV and Figure 6).

Model sensitivity and uncertainty

The results of the experiment runs indicate that with the
snowmelt runoff coefficients (Cs) set to zero, the model
optimized as well as when Cs values were also included
through the MCMC technique. The rainfall runoff
coefficients (Cr) are parameterized to higher values, and
themodel is able to simulate the hydrograph by optimizing x
and y coefficients withmodel performance equivalent to that
Hydrol. Process. (2013)



Figure 6. Time series and scatter plots of observed and modelled streamflow using observed precipitation at Lungthung station for 2002–2003 (a, b),
2003–2004 (c, d), 2004–2005 (e, f) and 2005–2006 (g, h)

P. K. PANDAY ET AL.
with the best estimates of parameters as in Table IV. The first
ensemble parameter sets (best ensemble) randomly selected
from the posterior distribution output from MCMC did not
exhibit any significant variations in model fit and perfor-
mance. This is to be expected as the parameter sets are
Copyright © 2013 John Wiley & Sons, Ltd.
accepted by the MCMC approach. Because the most
sensitive parameters have narrow, unimodal distributions,
similar model fit and performance is achievedwithin a broad
distribution of other parameters. However, when the
distribution of the most sensitive parameters was altered
Hydrol. Process. (2013)



Table IV. Evaluation of snowmelt runoff model performance with Markov Chain Monte Carlo technique and using observed
precipitation at Lungthung station and gridded Asian Precipitation – Highly Resolved Observational Data Integration towards

Evaluation precipitation data

Hydrological
Year

Model efficiency (with observed precipitation) Model efficiency (with APHRODITE precipitation)

Nash–Sutcliffe
metric

Coefficient of
determination

Difference of
volume (Dv %)

Nash–Sutcliffe
metric

Coefficient of
determination

Difference
of volume (Dv %)

2002–2003 0.84 0.84 1.9 0.73 0.79 13.1
2003–2004 0.85 0.85 5.2 0.82 0.87 11.9
2004–2005 0.80 0.80 2.7 0.78 0.80 5.10
2005–2006 0.87 0.87 0.7 0.85 0.85 3.12

APHRODITE, Asian Precipitation – Highly Resolved Observational Data Integration towards Evaluation.

APPLICATION AND EVALUATION OF A SNOWMELT RUNOFF MODEL IN THE HIMALAYA
slightly from their posterior distributions in the second
ensemble parameter sets, there were notable changes in the
model fit of the ensemble runs. Changing the x parameter
randomly within ±5% of its mean value of its posterior
distribution resulted in sizeable changes in model fit and
performance (NS ranges from 0.3–0.8 and Dv ranges from
�6% to 12%). Similarly, changing the y parameter also
resulted in notable changes in model fit and performance
(NS ranges from 0.7–0.8 and Dv ranges from �8% to 7%).
When the parameter distributions are altered randomly

within ±10% of mean value of the posterior distribution,
degree-day factor and critical temperature did not affect the
model fit and total input contributions relative to the best
ensemble.When lapse rate was varied within ±10% ofmean
value of its distribution, the average total input contributions
of snowmelt were 25.8 ± 4.4%, 4.2 ± 1.9% for precipitation
as snow on previously snow-free areas, and 70.0 ± 5.8% for
contributing precipitation across the 2002–2006 period.
Figure 7a shows a larger 5th and 95th percentile envelope
for simulated streamflows using lapse rate, indicative of the
model’s sensitivity to this parameter relative to the narrower
envelope for critical temperature in Figure 7b.
(a) (

Figure 7. Streamflow ensemble simulations (2002–2003) by randomly va
distribution. Black circles are observations and the dark cyan lines depict the

percentiles overlap only

Copyright © 2013 John Wiley & Sons, Ltd.
The final ensemble runs where the parameters are
randomly sampled from the cumulative distribution curve
capture the uncertainty over the full range of parameter
variations from the posterior distribution. Figure 8 shows the
uncertainty bounds from the ensemble streamflow, which
are large enough during the spring snowmelt period to
include most of the observations but not large enough
particularly during the summer monsoon months. The final
ensemble streamflow simulations were also used to generate
average total input contributions of rainfall and snowmelt
for all simulated years and standard errors of these
contributions (Figure 9). The average proportion of
snowmelt in the runoff in the Tamor River basin for the
2002–2006 period is 29.7 ± 2.9%, which includes
4.2 ± 0.9% from new snow onto previously snow-free areas,
whereas 70.3 ± 2.6% is attributed to rainfall contributions.
The cumulative runoff indicates that most of the snowmelt
contribution occurs between April and August. Although
there is interannual variability in the contribution of
snowmelt runoff, elevation zone 3 (4000–5500m) contrib-
utes on average 56.9 ± 3.6% of all snowmelt input and
28.9 ± 1.1% of all rainfall contribution to runoff. Elevation
b)

rying the distribution of the parameters by ±10% of its mean posterior
5th and 95th percentiles of the ensemble. Where lines for the 5th and 95th
a single line is visible

Hydrol. Process. (2013)



Figure 8. Streamflow ensemble simulations using observed precipitation at Lungthung station for Tamor River basin for hydrologic years (a) 2002–2003, (b)
2003–2004, (c) 2004–2005 and (d) 2005–2006. Black circles are observations and the cyan lines depict the 5th and 95th percentiles from the ensemble

(a) (b)

(c) (d)

Figure 9. Cumulative curves of computed daily snowmelt depth, melted precipitation in the form of snow and rainfall depths for the (a) 2002–2003,
(b) 2003–2004, (c) 2004–2005 and (d) 2005–2006 hydrological years for the Tamor basin

P. K. PANDAY ET AL.

Copyright © 2013 John Wiley & Sons, Ltd. Hydrol. Process. (2013)



APPLICATION AND EVALUATION OF A SNOWMELT RUNOFF MODEL IN THE HIMALAYA
zones 1 (533–2500m) and 2 (2500–4000m) contribute
on average 67.9 ± 2.7% of the all annual rainfall input to
the basin.

Model results using APHRODITE precipitation

The modelled streamflow obtained using APHRODITE
precipitation data over the hydrological periods and
Figure 10. Time series and scatterplots of observed and modelled streamflow
towards Evaluation precipitation (black) and observed station precipitation (blue)

Copyright © 2013 John Wiley & Sons, Ltd.
calibrated using MCMC captured the observed streamflow
fairly well (Figure 10).Modelled streamflowusing observed
station precipitation is also plotted alongside, which
performs better on the basis of evaluation metrics and
simulation of peak discharges (Table IV). Although the NS
coefficient value was ~ 0.80 on average across all
simulations, the model failed to capture peak discharge
using Asian Precipitation – Highly Resolved Observational Data Integration
for 2002–2003 (a, b), 2003–2004 (c, d), 2004–2005 (e, f) and 2005–2006 (g, h)

Hydrol. Process. (2013)
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periods contributing to difference in volume (Dv) of on
average 8.3%. Generally, the modelled hydrology using
basin-averaged APHRODITE precipitation failed to capture
high discharge periods across all years when compared to
the simulations using gauged precipitation as input data.
Overall, use of the APHRODITE precipitation data yielded
similar model skill in simulating the hydrograph but
estimated a smaller total contribution from precipitation
input to the basin (more from snowmelt) when compared
with model simulations using the observed station precip-
itation data.
DISCUSSION

This study provides an application and evaluation of the
SRM in a mountainous basin in the eastern Nepalese
Himalaya. In this study, the SRMwas coupled to aMCMC
data assimilation approach to examine associated param-
eter sensitivities, uncertainties and model performance in
the Tamor River basin for the 2002–2006 period. A
majority of the studies involving snowmelt runoff models
use parameter values from existing studies, and therefore,
parameter calibration, types of input data and equifinality in
parameter sets have not been fully explored (particularly for
the Himalayan region). Additionally, lack of observational
data is problematic for transfer of parameters across space
and time and may introduce added uncertainty. Uncertainty
in a model is usually a joint outcome of uncertainties in
model structure, input data errors and parameter errors,
which leads to difficulty in approximating the behaviour of a
model consistently (Vrugt et al., 2005). Although any
parameter optimization technique can only reduce uncer-
tainty in the parameters, optimization and data assimilation
methods such as the MCMC may be better for accounting
important sources of uncertainty.
Overall, parameter optimization using MCMC increased

the fit between the observed and modelled streamflows and
further reduced the volume difference error. This study also
showed that prior ranges of parameter values are important
in constraining model performance and decreasing param-
eter uncertainty. When the parameter ranges were logically
constrained or informed from estimates from previous
studies and then optimized using MCMC, the output
parameters value ranges were more relevant and physically
plausible. Model evaluation through additional experiment
runs indicate that despite overall good performance of SRM,
there might be lack of confidence in model structure in
simulating physical realism of some of the processes. For
instance, the model was able to reproduce the hydrograph
well even when snowmelt runoff contributions were
excluded from simulations. As the contributing rainfall to
the Tamor basin is high, relative to the snow component,
model parameters were able to compensate for the absence
Copyright © 2013 John Wiley & Sons, Ltd.
of snowmelt contributions and simulate the annual
hydrograph with relatively high fit and performance. This
test identifies an important model structural uncertainty that
is not currently reflected in the reported uncertainty on
forecasts and the associated snowmelt contribution. It also
identifies that the hydrograph does not constrain estimates of
the fractional contributions of total outflow coming from
snowmelt versus rainfall. Instead, the model’s estimates of
the snowmelt contribution derive mainly from volume
considerations based on the snow-covered area, the degree-
day model of melt and rainfall depths. This lends important
new insight into the practical outcomes of SRM application
that may not have been given full attention in past
applications for similar purposes. This partly reflects a
limitation of a conceptual lumped model such as the SRM.
However, there are some clear advantages to using only a
few parameters for modelling, particularly when there is
such a lack of observations and strong seasonal variation in
the nature of parameters across a topographically challeng-
ing environment. When more complex physically based
hydrological models are applied to such environments,
calibration can be further challenged owing to the large
number of parameters involved. Furthermore, it is not clear
that such an improvement in mechanistic realism would
translate into improved model skill in matching the
hydrograph or in representing volume contributions to total
basin surface water outflow.
The posterior distribution output from MCMC indicates

that the coupled approach was successful in constraining the
ranges of sensitive parameters in the model. Model
sensitivity using ensemble runs indicated that the x
coefficient, y coefficient and lapse rate are the most sensitive
parameters in the model. The recession coefficient (k), which
is a function of x and y coefficients, is important as it
represents an inertia or memory in streamflow and also
controls the amount of the dailymelt water that appears in the
runoff, whereas lapse rate is important in lapsing the zonal
temperature to compute daily zonal snowmelt depth. The
narrow, unimodal distributions of these parameters provide
an indication of the degree to which these parameters were
constrained by the MCMC approach. Parameters that are
well constrained tend to have small standard deviations with
well-defined unimodal distributions, whereas poorly
constrained parameters exhibit flat distributions with large
standard deviations (Braswell et al., 2005). Once the
sensitive parameters are constrained to a narrow distribution,
other parameters that are not as sensitive provide a similar
model fit and performance resulting in broad posterior
ranges. A study by Seibert (1997) also found that only few of
the parameters were well defined when the Hydrologiska
Byråns Vattenbalansavdelning model, a conceptual degree-
day model, was parameterized over central Sweden. This is
also suggestive of trade-offs among parameters leading to
broader posterior distributions where different parameter
Hydrol. Process. (2013)
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sets may be acceptable in reproducing the observed
hydrology within a basin.
The overall model parameter uncertainty was character-

ized as standard errors in the total input contributions and
uncertainty in time history of streamflow as 5% and 95%
confidence intervals (Figure 8). Because the uncertainty
bounds are not large enough to include all of the
observations, parameter uncertainty alone cannot explain
the total error in the model. If the bounds were large enough,
parameter variability alone could account for overall
uncertainty by compensating other sources of error intro-
duced by model structure and input data (Blasone et al.,
2008). As most of the observations outside of the
uncertainty bounds are during the summer months, the
unaccounted uncertainty could arise from uncertainty in
input precipitation data.
On the basis of the evaluation metrics, use of APHRO-

DITE gridded precipitation product provided comparable
skill relative to the discharge modelled using observed
station observations. APHRODITE data have been shown
to be effective in simulating and forecasting discharges
using a snowmelt model in other high-altitude ranges such
as the Karakoram region (Tahir et al., 2011). The results
indicate that the total rainfall contributions to runoff is lower
when APHRODITE is used for calibrating the model. This
is consistent with past studies that indicated underestimated
total annual precipitation and high discharges when
APHRODITE was used in snowmelt runoff modelling in
the Hunza River basin (Tahir et al., 2011). Nonetheless, the
findings from our study using APHRODITE indicate that
these data can be important inputs for precipitation in basins
lacking ground observations. We also find, however, that
uncertainties in the available input data such as precipitation
are equally as important as uncertainty introduced by model
parameters. Model parameters calibrated using an input
precipitation that either underestimates or overestimates
actual precipitation will compensate for such error when
matching the hydrograph (Pellicciotti et al., 2012) but may
still alter conclusions about fractional contributions from
snowmelt and rain.
This study shows a total snowmelt contribution to be

29.7 ± 2.9% of annual discharge averaged across the
2002–2006 hydrological years for the Tamor basin.
Bookhagen and Burbank (2010) showed that Eastern
Himalayan catchments draining into the Bay of Bengal
received ~80% of their annual rainfall during monsoon and
less than 20% from snowmelt. For comparison, snowmelt
contributions to annual runoff in the Satluj basin
(22 275 km2) in the western Himalayan region has been
estimated to be up to ~59%, with the summer contributions
averaging ~75% for the late 1980s period (Singh and Jain,
2003). Another studymodelling snow and glacial melt in the
Dudh Kosi River basin (3712 km2) estimated total melt
contributions to be 34% (Nepal et al., 2013). This study also
Copyright © 2013 John Wiley & Sons, Ltd.
found the 4000–5500m elevation range to be the most
important with regard to its snowmelt contributions to
annual runoff. Biggs and Whitaker (2012) also introduced
the concept of critical zone using the example of Merced
River basin, California, which can be important in
anticipating the impacts of regional climate change on the
timing and volume of runoff events.
A logical incremental improvement on this work would

be to incorporate the present and future role of glaciers in
the runoff. Previous studies in the Himalayan region (e.g.
Tahir et al., 2011) have used the SRM to include glacier
melt by calibrating the model using a higher degree-day
factor for the higher elevations. Although this SRM study
does not explicitly incorporate glaciated regions, they are
partly taken into account through the use of snow depletion
curves. The decline of snow cover depletion curves levels
out during the later portion of the snowmelt season, thereby
indicating the presence of permanent snow or glaciers (e.g.
zone 4). Model modifications would involve incorporation
of glacier-covered areas at the highest elevations and
calibration of model for parameters such as degree-day
factor that are different for snow and ice. Additional input
data such as estimates of snow cover data, calibration
against multiple variables such as inclusion of glacier mass
balances orfixing knownparameters fromfield observations
are usually the options to further narrow the posterior
distributions and better constrain these parameters that vary
seasonally across elevations (Boudhar et al., 2009;
Pellicciotti et al., 2012). Given the limited availability of
data and the parsimoniousness of this snowmelt runoff
model, obtaining values through field observations or fixing
parameters based on values reported from previous short
field campaigns are potential options to improve the model.
SUMMARY

This study has shown that a snowmelt runoff model based
on degree-day factors has skill in simulating daily
streamflow in a mountainous environment with limited
coverage of hydrometeorological measurements. Coupling
the SRM with an MCMC method provided an improved fit
to observed streamflows but still failed to capture peak
discharge during the summer monsoon months. This is
likely due in part to the lack of precipitation data coverage
throughout the basin but could also result from model
structural errors. Model performance in simulating the
hydrograph is strongly sensitive to recession coefficients
and the lapse rate, but exhibited little sensitivity to runoff
coefficients, the critical temperature that determines the
phase of precipitation (snow or rain) and the degree-day
factor that estimates melt depth from degree days.
Correspondingly, the MCMC approach to parameter
determination yielded narrow distributions only for those
Hydrol. Process. (2013)
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parameters to which the model-estimated hydrograph is
sensitive. The study provides a useful guide for how to
constrain parameters, provide uncertainty bounds in snow-
melt contributions to runoff, analyze effects of input
precipitation and examine model uncertainty in Himalayan
basins. The Himalayan terrain, meteorological conditions
and lack of ground-based observations continue to challenge
snowmelt runoff and hydrologicmodelling in the region. By
testing results with two alternative precipitation datasets, we
noted how both the available input data and the parameter
sets introduce uncertainties, and methods to thoroughly
characterize and minimize these uncertainties is important.
The need for further hydrological research on snow and
glacial melt and, moreover, strengthening of hydrometeo-
rological observation network for the HKH region should
not be overlooked. Overall, this study shows that a
combination of known parameter ranges along with an
iterative model-data fusion technique such as the MCMC
can provide a calibration and optimization method to
explore the parameter space efficiently, obtain reliable
parameter estimates and quantify uncertainty in model
results and associated inferences.
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