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Arctic soils contain three times as much carbon (C) as all aboveground biomass
distributed globally, much of which is stored in permafrost soils. Here, we (1)
determine the predictability of estimating soil organic carbon (SOC) using different
satellite data, classifications, and methods; (2) estimate the quantity and distribution of
SOC for the top 10 cm for the Ambolikha River watershed (~121 km2) in northeast
Siberia, a sub-watershed of the Kolyma River; and (3) produce a hybrid SOC map
through data fusion, combining the strengths of each data type. Land cover maps were
produced using a pixel-based classification with Landsat-5 Thematic Mapper (TM)
data and an object-based classification using WorldView-2 data. Spectral mixture
analysis (SMA) was performed on both data types to calculate the fraction of four
vegetation types in each pixel, and land cover maps were combined with field
measurements of SOC in the top 10 cm. The overall classification accuracy was
69% for Landsat, 81% for WorldView-2, and 82% for the hybrid map. The hybrid
map estimated 490.5 Gg of SOC for the top 10 cm within the Ambolikha River
watershed, with less severe over- or under-estimated than the Landsat or WorldView-2
maps alone. The results suggest that (a) higher spatial resolution satellite data and
object-based classification should be used for land cover classification in the Arctic;
(b) integrating multiple sensors maximizes the strengths of different sensors for
estimating SOC; and (c) previous studies performed at the regional or pan-Arctic
scale using lower spatial resolution data likely underestimate total SOC.

Keywords: Arctic; Kolyma River; soil carbon; WorldView-2; Landsat-5 TM; hybrid
map; belowground carbon

1. Introduction

Northern high latitudes are experiencing climate change effects earlier and more severely
than other regions of the globe, particularly with regard to carbon (C) fluxes between
aquatic, terrestrial, and atmospheric pools (Grosse et al. 2011). In the Arctic, the largest
pool of terrestrial organic C is stored in soils, which contain approximately three times the
amount of C stored in global terrestrial aboveground biomass (Jobbágy and Jackson 2000;
Schuur et al. 2008). The northern permafrost (i.e., perennially frozen ground) region is
approximately 18.8 million km2 in size and includes 16% of global soil area (Hugelius
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et al. 2010). Increased warming and associated permafrost thaw are causing large amounts
of SOC to decompose quickly and subsequently be released to the atmosphere as CO2 and
methane (Zimov et al. 2006). Anisimov, Nelson, and Pavlov (1999) predicted that up to
25% of SOC stored in northern peatlands and permafrost has the potential to flux to the
atmosphere during the twenty-first century owing to enhanced warming, equivalent to
approximately 100 Pg C (or an additional 47 ppm of C to the global atmosphere). This
release of C as greenhouse gas is potentially large enough to increase local and global
surface temperatures by up to 4°C, further operating as positive feedback on climate
warming (Oechel and Vourlitis 1994). Monitoring C dynamics and estimating regional
belowground C stores, along with associated impacts on aboveground vegetation and
wetlands, can therefore be instructive in predicting the rate and intensity of future
warming trends (Schuur et al. 2008; Potter 2014).

Northern Siberia comprises the majority of Arctic land areas and is therefore an
important region for studying the impacts of climate warming on SOC at northern high
latitudes (Tarnocai et al. 2009). The Kolyma River in northeastern Siberia, among the
largest rivers draining to the Arctic Ocean, is particularly important because it is the
largest Arctic river basin completely underlain by continuous permafrost (Zimov
et al. 2006). C-rich so-called yedoma soils (i.e., Pleistocene-aged loess deposits containing
50–90% ice) of this watershed contain up to 500 Pg C, with continuous permafrost
reaching up to 650 m in depth (Kajimoto et al. 2006; Walter et al. 2006; Schuur
et al. 2008). Approximately 88% of C in northern permafrost regions is found below-
ground, yet this C pool is also one of the least studied (Hugelius et al. 2010). Several
recent studies have estimated aboveground biomass and C content within the lower
Kolyma River basin (Kajimoto et al. 2006; Alexander et al. 2012; Berner et al. 2012),
yet none to date have utilized satellite data to estimate belowground C specifically. Owing
to accessibility limitations in remote regions of the Arctic, it is often difficult to estimate
C across large, diverse landscapes using field data alone (Fuchs et al. 2009).

Satellite remote sensing provides the capability to produce spatially continuous
estimates of belowground C at the landscape scale (Heikkinen et al. 2004; Szakacs
et al. 2011). Although remotely sensed data cannot directly measure specific components
of the C cycle, they are commonly used to observe biophysical phenomena related to
C storage and flux (Sitch et al. 2007). In particular, relating SOC quantities with the land
cover type is a newly emerging method for linking ground measurements to remotely
sensed data (Sitch et al. 2007; Zhou et al. 2008; Szakacs et al. 2011). SOC storage and
decomposition are strongly influenced by vegetation dynamics, which in turn are largely
controlled by hydrology, temperature, disturbance regime, and soil biogeochemical con-
ditions (Grosse et al. 2011). The vegetation type and land cover can be mapped success-
fully using several different classification methods, often determined by the spatial and
spectral resolutions of the available data (Turner, Ollinger, and Kimball 2004). Pixel-
based classifiers such as maximum likelihood (Max Like) are commonly used for medium
(i.e., spatial resolution 5–250 m) and coarse (i.e., spatial resolution >250 m) data, where
each pixel is classified based on its spectral properties (Rogan and Chen 2004; Perea,
Meroño, and Aguilera 2009; Zhang and Zhu 2011). At fine spatial resolutions (i.e., <5 m),
however, object-based classification is often employed to create exclusive segments of
pixels with similar spectral, texture, and shape characteristics (Zhang and Zhu 2011).

A variety of studies related to satellite data types have compared the use of fine and
medium spatial resolution data and image classification methods, often supporting the use
of fine resolution imagery in highly heterogeneous landscapes in both urban (Thomas,
Hendrix, and Congalton 2003; Giner and Rogan 2012; Tang and Pannelli 2009) and
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vegetated locations (Stow et al. 2004; Wulder et al. 2004; Fuchs et al. 2009; Huang
et al. 2009). Although many previous studies relate the land cover classification maps to
C stocks (Wulder et al. 2004; Fuchs et al. 2009), most are concerned with aboveground
biomass alone owing to a stronger correlation with biophysical characteristics that can be
measured remotely (Turner, Ollinger, and Kimball 2004; Fuchs et al. 2009; Berner
et al. 2012). Until now, no studies have produced estimates of belowground SOC storage
in the Arctic using multiple spatial resolution data or compared the quantitative differ-
ences that may result. Additionally, no studies have used data of different spatial resolu-
tions to develop a hybrid land cover classification map and further estimate associated
SOC quantities across a landscape. Given the estimates of large SOC stocks in permafrost
landscapes, it is necessary to explore different data types and methods used to quantify
these C reservoirs in order to establish effective practices for future studies in the region.

The objectives of this study were to (1) determine the predictability of estimating soil
organic carbon (SOC) using different satellite data, classifications, and methods; (2)
estimate the quantity and distribution of SOC for the top 10 cm for the Ambolikha
River watershed (~121 km2) in northeast Siberia, a sub-watershed of the Kolyma River;
and (3) produce a hybrid SOC map through data fusion, combining the strengths of each
data type. Medium spatial resolution data from Landsat-5 Thematic Mapper (TM) and fine
spatial resolution data from WorldView-2 were used to produce two land cover maps,
using a Max Like algorithm and an object-based segmentation algorithm, respectively.
The resulting maps were compared to determine the most appropriate available data type
and the method for SOC mapping in this region. The classes that were most accurately
mapped by each sensor were then combined in a hybrid map through data fusion to
produce the best estimate of total SOC. Here, we introduce a satellite-based quantification
of belowground C stores, providing an assessment of a set of methods for such investiga-
tions. Furthermore, the findings of this research will be useful to help streamline large-
area studies of SOC in support of field monitoring efforts, which is particularly critical for
regions such as the Kolyma River basin that may be highly susceptible to C release
through climate warming.

2. Study area

The Ambolikha River watershed (approximately 68.459–68.737°N, 161.313–161.459°E)
is an area of ~121 km2 located in northeastern Siberia, located 240 km north of the Arctic
Circle near the city of Cherskiy (Figure 1). The area belongs to the administrative region
of Sakha Republic (formerly Yakutia) of the Russian Federation and is a sub-watershed of
the Kolyma River. Though this study deals primarily with terrestrial SOC, we chose a
watershed delineation to facilitate linking results to past and future studies for the area
concerned with aquatic and atmospheric C reservoirs. In particular, an increasing number
of studies have taken a watershed approach to understanding C storage and flux across the
Arctic landscape (e.g., Frey and Smith 2005; Tank et al. 2012; Denfeld et al. 2013).
Topography of the Ambolikha watershed is generally flat, with elevation ranging from 3
to 40 m above the sea level. Owing to the shallow relief, the watershed is also comprised
of numerous small rivers, streams, and lakes with diameters ranging from 5 to >2000 m.
Many of these so-called thermokarst lakes formed as thawing permafrost created depres-
sions in the landscape that were then filled with surface water. Drained lake basins, or
alases, may also form as these lakes terrestrialize with peat and subsequently dry up
(Koutaniemi 1985). The region is underlain with ~350–650 m deep continuous perma-
frost, with an active layer (the upper layer of soil that thaws and refreezes seasonally)
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depth ranging from 0 cm in February to 20–50 cm in July (Walter et al. 2006; Schuur
et al. 2008). The climate is cold and continental, with average temperatures ranging from
~–35°C in January to ~18°C in July, and the average total annual precipitation ranging
from ~200–215 mm (Corradi et al. 2005; NCDC 2012). While the length and size of the
Kolyma River basin (approximately 2130 km and 664,000 km2, respectively) result in
larger variations in topography, vegetation, and climate across its geographic extent, the
vegetation, soil, topography, and hydrology of the Ambolikha watershed are representa-
tive of Arctic lowland regions of the Kolyma River basin.

Figure 1. (a) Study area showing the location of the Ambolikha River watershed in Northeast
Siberia, with (b) a panchromatic image from Landsat-5 TM (30 m spatial resolution) captured on 11
July 2011 and (c) a WorldView-2 (1.85 m spatial resolution) true color composite (RGB = 5, 3, 2)
captured on 12 July 2011 ((b) is outlined in (a), (c) is outlined in (b)).

4 D.E. Broderick et al.
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Although there is relatively low diversity in terms of tree and shrub species, the land
cover and tree stand density are highly heterogeneous at the landscape scale. The
deciduous needle-leaf species Larix cajanderi (Cajander larch) is the dominant tree type
of the region. Other vegetation types consist largely of shrub and understory species
including Betula divaricate and Betula exilis (dwarf birch); Pinus pumila (dwarf pine);
Ledum decumbens (Labrador tea); Salix pulchra, Salix alaxensis, and Salix glauca (dwarf
willow); and a variety of mosses and grasses (Kajimoto et al. 2006; Abaimov 2010).
Dominant soil types include entisols, gelisols, and loess deposits, which comprise
Pleistocene-aged yedoma soils. The fire regime for the region is linked to both summer
temperatures and aboveground biomass, and has a return interval of 50–120 years
(Furyaev et al. 2001; Schepaschenko, Shvidenko, and Shalaev 2008).

3. Data and methods

3.1. Satellite and ancillary data

A 30 m Landsat-5 Thematic Mapper (TM) image (optical bands 1–5 and 7; 8-bit radio-
metric resolution) captured on 11 July 2011 (path 105, row 12) was used to map land
cover in the Ambolikha watershed (see Table 1 for wavelength designations). The image
was 100% cloud-free and corresponded with the time of year when field measurements
were collected (i.e., July 2010, 2011, and 2012). Atmospheric correction was performed
using the cos(T) model, which subtracts non-zero pixel values for dark objects from all
other pixels in the image to remove haze effects and converts digital numbers (DNs) to
surface reflectance (Chavez 1996). The images were left in their original Universal
Transverse Mercator (UTM) projection (zone 57 N), as it was received from the US
Geological Survey.

Panchromatic and multispectral WorldView-2 (bands 2, 3, 5, and 7; 11-bit radiometric
resolution) data captured on 12 July 2011 with spatial resolutions of 0.46 m
(panchromatic) and 1.85 m (multispectral) were used to map land cover across the
watershed (see Table 1 for wavelength designations). The images were radiometrically
corrected using dark object subtraction to account for variability in detector response and
differences in gain and offset that may result in a non-uniform image (Updike and
Comp 2010). Additional atmospheric correction (e.g., conversion to top-of-atmosphere
spectral radiance) was unnecessary because all WorldView-2 images were collected on the
same day and all pixel values were therefore relative to one another. Images were
converted from their original north polar stereographic projection to a UTM projection

Table 1. Bands and wavelength ranges (in micrometers) for the Landsat-5 and
WorldView-2 bands utilized for land cover classification.

Landsat-5 TM WorldView-2

Band Wavelength (μm) Band Wavelength (μm)

1 (Blue) 0.45–0.52 Panchromatic 0.45–0.81
2 (Green) 0.52–0.60 2 (blue) 0.42–0.52
3 (Red) 0.63–0.69 3 (green) 0.51–0.59
4 (Near-infrared) 0.76–0.90 5 (red) 0.62–0.69
5 (Short-wave infrared) 1.55–1.75 7 (near-infrared1) 0.77–0.90
7 (Short-wave infrared) 2.08–2.35
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(zone 57 N) for consistency with the Landsat-5 image. An independent set of validation
sites (150 per land cover class; support size 1 m2) was also selected randomly using the
WorldView-2 image to assess the accuracy of the Landsat-5 and WorldView-2 land cover
classifications.

Ancillary data include a northern circumpolar soil map with a minimum mapping unit
of 10 km2 from the National Snow and Ice Data Center (NSIDC; Tarnocai et al. 2002); a
northern Eurasia land cover map with 29 categories and a 1 km spatial resolution from
Global Land Cover 2000 (GEM; Bartalev et al. 2003); and the digital elevation model and
stream layers from the USGS Hydro 1 K dataset for Asia, both with a 1 km spatial
resolution (USGS 2011).

3.2. Field data collection

SOC was estimated at 35 terrestrial sites in July 2010, 2011, and 2012 (Figure 1).
Though 26 sites fell slightly outside of the study area boundary (within 0.5–4.5 km),
they are still closely representative of the vegetation conditions in the watershed,
increase the robustness of sites per land cover class, and are used in this study as a
test case for larger scale analyses. Sites were categorized as larch forest, shrub (<50%
larch), floodplain (low-lying areas seasonally inundated with melt water from lakes and
streams), or alas (Figure 2). Sites were selected to be representative of each cover type,
and subsequently consisted of varying stand densities and ages, species composition,
and topography in order to encompass their variability. At least three soil cores extend-
ing to 10 cm were extracted at each site. While the majority of cores were comprised
entirely of organic materials, cores at several sites also included mineral soil as the
organic layer was shallower than 10 cm. Field measurements included the organic layer
depth (within the active layer), mineral soil depth (if applicable), thaw depth, humic
layer depth, and dimensions of the core for each sample. Samples collected at five lakes
in 2012 using a hand-held Van Veen Grab were also incorporated to estimate C content
of lake-bottom sediments.

To estimate C content, soil and sediment samples from each site were weighed and
combined with volume measurements to calculate bulk density (the product of the dry soil
weight and core volume). Samples were then homogenized, subsampled, weighed, and
dried for 48 hours at 60°C. Next, samples were weighed again and placed in a muffle
furnace for 4 hours at 450° C to measure loss on ignition (LOI). The difference in weight
before and after combustion was assumed to be the organic content of the sample
(modified from Reeuwijk 2002). Percent C for each sample was determined using the
following formula for C content (e.g., Alexander et al. 2012):

C content ¼ 0:51�LOI� 0:6: (1)

Soil C was estimated in terms of grams per square meter (g C m−2) by multiplying
percent C, bulk density, and depth measurements for each core. Average organic layer
depths (within the thawed active layer) and standard errors (SE) for each land cover type
were determined based on field measurements, and the average soil C content by site and
by land cover type was calculated for the top 10 cm of the soil column. We provided
estimates for the top 10 cm to be comparable with findings from other studies (e.g.,
Hugelius et al. 2013) and to calculate SOC consistently across the watershed regardless of
the topography or land cover type.

6 D.E. Broderick et al.
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Figure 2. Ground photographs of (a) larch, (c) shrub, (e) floodplain, and (g) alas vegetation types
used in field sampling and land-cover classification with respective aerial examples (b), (d), (f), and
(h) from a WorldView-2 (1.85 m spatial resolution) true color composite (RGB = 5, 3, 2) captured
on 12 July 2011.
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3.3. Land cover classification

Image analysis was performed using the IDRISI Selva image-processing software
(Eastman 2012a). The first land cover classification effort utilized the Landsat-5 data and
pixel-based Max Like algorithm. Max Like is a parametric classifier that assumes a normal
distribution of statistics for each class defined based on calibration data, and assigns pixels
to the class with the highest probability according to a covariance matrix and mean vector
(Richards 1986; Shafri, Suhaili, and Mansor 2007). Calibration sites for bare soil, water,
larch forest, shrub, floodplain, and alas were defined across the Ambolikha watershed.
Relative probabilities of the expected frequency of each cover type were assigned to guide
the classification, which was based on Landsat bands 1–5 and 7 (see Table 1), using
ancillary data and knowledge of the study area. Lakes were manually delineated within
the water category, and the hard-classified map was reclassified to isolate the lakes and the
four vegetation classes (larch forest, shrub, floodplain, and alas).

Linear spectral mixture analysis (SMA) was performed on the spectral reflectance
data by manually selecting pure taxonomic image endmembers as training sites for each
of the four vegetation classes to produce fraction images. These fraction images
estimated the percentage of each vegetation type contained in each pixel (e.g., Settle
and Drake 1993). A residual image, which displayed the degree to which a pixel’s
composition could not be attributed to one of the defined taxonomic endmembers, was
produced using the following formula:

εi ¼ bi
Xn

i�1

aijxj
� �

(2)

where b is the spectral reflectance for the ith band of the pixel, a is the spectral reflectance
of the jth component in the pixel for the ith spectral band, i is the number of spectral
bands, j is the number of components in the mixture, and x is the fraction value of the jth
component in the pixel (Sohn and McCoy 1997). The residual image was used to
determine which locations were not easily designated as a specific mixture of vegetation
types, and SMA was rerun with additional training sites until the root mean square error
(RMSE) was less than 0.1.

The second land cover classification involved WorldView-2 imagery and an object-
based segmentation algorithm using WorldView-2 bands 2, 3, 5, and 7 (see Table 1).
Pixels were first grouped into segments based on similar spectral, texture, and shape
properties using the segmentation module in IDRISI Selva (Eastman 2012a). A surface
image of the variance within each pixel, based on a 3 × 3 moving window and the four
equally weighted bands, was produced to group pixels within a homogeneous region had
low values. Similar to a watershed delineation process, pixels were grouped if they were
in the same catchment, and segments were then created. The process worked iteratively to
compare segments with their neighbors, considering both the surface image and spectral
characteristics of adjacent segments using the formula:

Diff ¼
Xn

i¼1

Weighti � Weightmean � DiffMeani þWeightStddev � DiffStdDevið Þ (3)

Where Diff is the overall heterogeneity for a given segment; n is the number of input
images; Weighti, Weightmean, and WeightStd_dev are equally weighted input parameters;

8 D.E. Broderick et al.
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DiffMeani is the standardized difference in mean and standard deviations for the spectral
reflectance of all pixels in a potential segment; and DiffStd_Devi is the range of differ-
ences of standard deviations between two segments (Eastman 2012b). Calibration sites for
the above six land cover categories were defined on a segment-by-segment basis across
the Ambolikha watershed. The Segclass module was used to create the object-based
classification by combining calibration sites, the pixel-based Max Like classification,
and the segment image. Rather than assigning individual pixels to a class, classification
was determined by the majority class within a segment (Eastman 2012b). As with the
Landsat-5 classification, the image was reclassified to include only lakes and vegetation
classes (larch forest, shrub, floodplain, and alas). SMAwas then performed using the four
vegetation classes and taxonomic image endmembers for the segmentation classification
to produce fraction images for each vegetation type.

To compare the agreement between the Landsat-5 and WorldView-2 classifications
directly, the 30 m Landsat-5 map was upsampled to match the pixel size of the
WorldView-2 map. A cross-tabulation matrix was generated between these two maps
showing agreement and disagreement overall and by land cover type. An independent set
of validation sites (150 per class) was derived using stratified random sampling and the
panchromatic WorldView-2 image to assess the accuracy of the Landsat-5 and
WorldView-2 classifications and to determine which data type produced more reliable
results. Values were recorded in a confusion matrix, where the overall accuracy was
calculated as the sum of the diagonal values over the total number of randomly sampled
pixels (Gupta et al. 2004).

3.4. Soil C estimation

Soil C maps for the top 10 cm were created for the Ambolikha watershed using the field
data of average SOC values by the land cover type and the SMA outputs based on the
Landsat-5 and WorldView-2 data. The average SOC values for each vegetation type were
multiplied by their respective fraction images, and the resulting images were summed to
produce total SOC estimates for the top 10 cm across the entire Ambolikha watershed
according to both Landsat-5 and WorldView-2. The average SOC value for lake sediments
was also included in the maps based on the isolated lakes. The maps provided both a
spatial representation of SOC and numeric values (in g C m−2) for the estimated quantity
of C across the watershed. Finally, difference images were created by subtracting Landsat-
5 fraction images from their respective WorldView-2 fraction images to indicate levels of
agreement and disagreement for the classifications across space. If a pixel value in the
difference image was positive, it corresponded to a higher pixel value (or estimated
percentage of the land cover type) in the Landsat-5 fraction image (and vice versa). A
difference image was produced in a similar manner for the total SOC quantity images for
the top 10 cm of the soil column.

The area of each cover type and the total amount of SOC in the top 10 cm were also
calculated based on the Landsat-5 and WorldView-2 classifications (both with and without
SMA) to determine whether using SMA improved quantity estimations. These calcula-
tions involved multiplying the total area of each cover type by the average g C m−2 for
each respective class for each method. When SMAwas used, areas were calculated as the
percentage of each pixel constituting each land cover type. Comparisons were made
regarding the similarities and differences in the quantity and allocation of both the land
cover types and total SOC values resulting from the data, classification method, and use
of SMA.

GIScience & Remote Sensing 9

D
ow

nl
oa

de
d 

by
 [

C
la

rk
 U

ni
ve

rs
ity

],
 [

K
ar

en
 F

re
y]

 a
t 1

0:
28

 1
3 

M
ar

ch
 2

01
5 



A final hybrid map was produced combining individual land cover classes that were
most accurate in the Landsat-5 and WorldView-2 classification maps according to the
confusion matrices (e.g., alases were mapped more accurately under WorldView-2, so
these areas became alases in the hybrid map). The individual SOC fraction images for
each data type were also integrated, depending on which class was more accurately
mapped, to create new estimates of SOC quantity and allocation in the top 10 cm.
These hybrid maps offer a method for deriving estimates for SOC by utilizing the
strengths of both Landsat-5 and WorldView-2.

4. Results

4.1. Field results

As measured in the field, the average organic layer depths for each vegetation type were
9.8 cm (±0.7 SE) for larch, 6.8 cm (±0.1 SE) for shrub, 16.4 cm (±1.6 SE) for floodplain,
and 11.2 cm (±0.5 SE) for alas. The average soil C content (in g C m−2) and SE for each
vegetation type and lakes for the top 10 cm based on LOI calculations is shown in
Table 2. Since the average organic layer depth for larch and shrub was less than 10 cm,
the SOC values include a portion of the mineral soil to extend measurements to the top
10 cm of the soil column. Within this depth profile, shrubs contained the highest amount
of SOC while floodplains had the least.

4.2. Land cover classification

The land cover classification outputs for the Landsat-5 imagery (using the Max Like
classification) and the WorldView-2 imagery (using object-based classification) predict
the spatial allocation of six land cover types (bare soil, water, larch, floodplain, shrub, and
alas) (Figure 3a and b). The difference between the two classification outputs shows blue
areas indicating agreement and black areas indicating disagreement (Figure 3c). Table 3
shows the number of pixels that agreed for each land cover as well as to which category
pixels were allocated when they did not agree, with 67% overall agreement between the
Landsat-5 and WorldView-2 maps. Based on the independent validation sites derived
from the WorldView-2 image, the Landsat-5 map overall accuracy was 69%, with an
average omission error of 31% and an average commission error of 29% (Table 4). The
WorldView-2 map overall accuracy was 81%, with an average omission error of 19% and
an average commission error of 18% (Table 5). In both the Landsat-5 and WorldView-2
classifications, shrub locations were overestimated (i.e., the commission error for shrub
was greater than the omission error), while bare soil, floodplain, and alas were under-
estimated. The larch land cover class was slightly underestimated by Landsat-5 but

Table 2. Field measurements of organic layer depth and SOC content for the
top 10 cm of soil by land cover type.

Cover type (n) Organic layer depth (cm) SOC for top 10 cm (g C m−2)

Alas (3) 11.2 (0.5) 4091.1 (885.1)
Floodplain (6) 16.4 (1.6) 3507.9 (721.0)
Lake (5) NA 1525.6 (53.0)
Larch (19) 9.8 (0.7) 3510.3 (926.3)
Shrub (2) 6.8 (0.1) 7667.5 (2956.6)

Note: Values are means (±1 SE).

10 D.E. Broderick et al.
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overestimated by WorldView-2. The alas land cover class had the highest omission error
in both classifications (49% in Landsat-5 and 29% in WorldView-2), whereas shrub had
the largest commission error (49% in Landsat-5 and 33% in WorldView-2).

4.3. Soil C estimates

SMA produced fraction images for each vegetation type using the Landsat-5 and
WorldView-2 classifications (Figure 4). The residual images had mean values of 0.073
for Landsat-5 and 0.023 for WorldView-2. Difference maps (Figure 4c, f, i, and l) display
the spatial allocation of differences between the fraction images, with positive values (in
red) representing higher fractions in the Landsat-5 image as compared with the
WorldView-2 image. The average pixel values for each difference map were as follows:
−0.002 for alas, −0.007 for floodplain, 0.015 for larch, and 0.008 for shrub, indicating that
WorldView-2 predicted a higher percentage of alas and floodplain than Landsat-5.
Histograms were produced for each fraction image to show the number of pixels classified
as a percentage of alas, floodplain, larch, and shrub classes for Landsat-5 and WorldView-
2 (Figure 5). The Landsat-5 trends are relatively noisy, while the WorldView-2 trends are
significantly smoother.

Figure 6a and b illustrate the distribution and quantity of SOC in the top 10 cm and
were created by multiplying the SMA fraction images by the corresponding SOC values
for each vegetation type and applying the average lake SOC value to isolated water
bodies. A difference map was produced to show the disagreement in the quantity and
allocation of SOC estimated under each sensor (Figures 6c). Table 6 shows the average
SOC (g C m−2), area (km2), and total SOC (Gg) for each land cover type and classification
method, which were calculated using the areal estimates of each land cover type for the
different classifications and the average field-based SOC values for each land cover type.

Figure 3. (a) Landsat-5 and (b) WorldView2 land-cover classifications for the Ambolikha River
watershed showing bare soil, water, larch forest, shrub, floodplain, and alas with (c) agreement/
disagreement image.
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The categories with the largest differences in area between the two classifications were
larch and shrub, where the overall larch area was approximately 11 km2 (~54%) smaller in
the Landsat-5 map than in the WorldView-2 map. In contrast, the shrub area was
approximately 30 km2 (~53%) larger in the Landsat-5 map than in the WorldView-2 map.

Land cover-specific values were also summed to yield SOC estimates for the entire
Ambolikha watershed. Within the top 10 cm (which also included SOC values for lakes),
Landsat-5 estimated 633.4 Gg (without SMA) and 528.1 Gg (with SMA), whereas
WorldView-2 estimated 557.3 Gg (without SMA) and 473.3 Gg (with SMA). There are
also several notable results regarding the use of SMA to calculate areas for each vegeta-
tion class (Table 6). Using Landsat-5, the area of shrub decreased by 29 km2 when SMA

Figure 6. Top 10 cm SOC maps for the Ambolikha River watershed based on (a) Landsat-5 and
(b) WorldView-2, with (c) difference image (where positive values indicate higher quantities
estimated in Landsat-5 map).

Figure 5. Histograms indicating the frequency of pixels classified as varying percentages of each
vegetation type for SMA fraction images using (a) Landsat-5 and (b) WorldView-2.
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was utilized. In contrast, the larch area increased by 22 km2 and the alas area increased by
12 km2. Similarly, using WorldView-2 the area of shrub decreased by 25 km2 when SMA
was used, whereas floodplain and alas areas saw increases of 9 km2 and 19 km2,
respectively. Finally, there were variable differences in areal estimates for certain vegeta-
tion types with regard to the classification method used. When SMA was not used,
Landsat-5 estimated 13 km2 of larch and WorldView-2 estimated 24 km2, showing a

Table 6. Average SOC (g m2), area (km2), and total SOC (Gg) for the Ambolikha River watershed
based on classification and with or without use of SMA (total values for comparisons are italicized).

Top 10 cm (g C m−2) Area (km2) Top 10 cm total SOC (Gg)

Landsat-5 (no SMA)
Larch 3510.3 13.1 46.0
Shrub 7667.5 63.1 483.8
Floodplain 3507.9 13.1 46.0
Alas 4091.1 6.4 26.2
Lake 1525.6 20.6 31.4
Total – 116.3 633.4

Landsat-5 (SMA)
Larch 3510.3 35.2 123.6
Shrub 7667.5 33.7 258.4
Floodplain 3507.9 11.6 40.7
Alas 4091.1 18.1 74.0
Lake 1525.6 20.6 31.4
Total – 119.3 528.1

WorldView-2 (no SMA)
Larch 3510.3 24.1 84.6
Shrub 7667.5 52.4 401.7
Floodplain 3507.9 7.9 27.7
Alas 4091.1 1.0 4.1
Lake 1525.6 25.7 39.2
Total – 111.0 557.3

WorldView-2 (SMA)
Larch 3510.3 23.5 82.5
Shrub 7667.5 27.5 210.9
Floodplain 3507.9 16.8 58.9
Alas 4091.1 20.0 81.8
Lake 1525.6 25.7 39.2
Total – 113.5 473.3

Hybrid map (no SMA)
Larch 3510.3 24.1 84.6
Shrub 7667.5 55.8 427.8
Floodplain 3507.9 7.9 27.7
Alas 4091.1 1.0 4.1
Lake 1525.6 25.7 39.2
Total – 114.5 583.4

Hybrid map (SMA)
Larch 3510.3 22.3 78.2
Shrub 7667.5 28.7 220.1
Floodplain 3507.9 18.9 66.3
Alas 4091.1 21.2 86.7
Lake 1525.6 25.7 39.2
Total – 116.8 490.5
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relatively large difference. However, when SMA was used, Landsat-5 predicted 18 km2

for alas whereas WorldView-2 predicted 20 km2. The data in Table 6 were summarized to
display the total area and top 10 cm SOC for the Landsat-5 and WorldView-2 outputs,
both with and without SMA (Figure 7).

The hybrid map involved identifying which sensor was more accurate on a per-class
basis according to the confusion matrices (Figure 8). In particular, WorldView-2 had a
higher accuracy for all classes except shrub, which was more accurately mapped by
Landsat-5 (and the hybrid classes were assigned as such). Areas not classified as any of
these categories (approximately 8 km2) were compared visually with the WorldView-2
validation image to determine how the area should be classified, and were most com-
monly awarded to the shrub class. SOC quantities for the hybrid map within the top 10 cm
estimates were 583.4 Gg without SMA and 490.5 Gg with SMA (Table 6). The overall
accuracy of the hybrid classification map was 82%, with an average omission error of
18% and an average commission error of 17%.

5. Discussion and conclusions

Based on these analyses, we report that the most predictable (non-hybrid) method for
estimating SOC in the Ambolikha watershed comes from the fine spatial resolution
WorldView-2 imagery, an object-based classification algorithm, and the use of SMA,
estimating approximately 473.3 Gg in the top 10 cm (Figure 6b; Table 6). Object-based
segmentation classification, based on WorldView-2 data with fine spatial resolution
(1.85 m), was more accurate at mapping the land cover (81% overall accuracy, 18%
average omission error, and 19% commission error) than a pixel-based Max Like classifier
using medium spatial resolution (30 m) Landsat-5 data (69% overall accuracy, 29%
average omission error, and 31% average commission error), with the majority of

Figure 7. Comparison showing area and top 10 cm SOC by classification method and use of SMA
for the Ambolikha River watershed.
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disagreement between classifications involving the shrub and larch classes (Tables 3–5;
Figure 3). Additionally, when compared with individual pixel values in the SOC maps
where field data were collected, Landsat-5 overestimated the SOC quantity in the top
10 cm by 8%, WorldView-2 underestimated by 3%, and the hybrid overestimated by 1%.

The total amount of SOC varied depending on the classification method and use of
SMA. For example, the difference between the highest and lowest SOC estimates was
167.9 Gg (without lakes, or 160.1 Gg including lakes). The WorldView-2 classification
was deemed more accurate according to the validation data (Tables 3 and 4); however,
even within WorldView-2, the use of SMA produced estimates that differed by 84.0 Gg.
We determined that the use of SMA yields more accurate results because it can incorpo-
rate sub-pixel composition and associated SOC quantities for the top 10 cm. In a land-
scape where the majority of pixels are mixed, the use of SMA indeed produces a more
precise estimate than would result from a hard classification even at fine spatial scales.
SMA created a more realistic portrayal of SOC through a soft classification that involved
multiple cover types within the same pixel. Given the nature of land cover types and
distribution, this method is more representative than the one designating pixels as strictly
one cover type in particular.

Previous studies comparing the use of high and medium resolution imagery for land
cover classification routines have produced similar conclusions regarding map accuracy.
In an exploratory study in China, Zhang and Zhu (2011) determined that the combination

Figure 8. (a) Hybrid classification map for the Ambolikha River watershed and (b) SOC for top 10
cm based on classes with highest accuracy for Landsat-5 and WorldView-2 classification.
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of high-resolution QuickBird imagery and object-based classification incorporating tex-
ture resulted in a more accurate map than a pixel-based map based on spectral properties
alone. Similarly, Hese, Grosse, and Pöcking (2010) determined that RapidEye data
(spatial resolution of 6.5 m) had a higher classification accuracy than Landsat MSS data
(spatial resolution of 80 m) when mapping changes in the lake area in the Lena River
delta. In particular, small lakes and land-water boundaries were more accurately classified
when a finer resolution and an object-based approach were employed. Fine spatial
resolution imagery is particularly advantageous in areas where the cover type tends to
vary rapidly because it can detect subtle changes that may be masked out at coarser spatial
resolutions (e.g., Figure 5).

The histograms created for the SMA fraction images, showing the number of pixels
classified as a percentage of each vegetation type, revealed noisy trends for the Landsat-5
images and smoother trends for WorldView-2 (Figure 5). These distributions justify the
use of SMA for Landsat-5, revealing that the Landsat-5 pixels were consistently mixed
owing to their coarser spatial resolution whereas the finer resolution of WorldView-2
resulted in fewer mixed pixels. Additionally, SMA helped reduce the inherent bias of the
Max Like algorithm toward larger classes (i.e., classes with a higher probability of pixel
membership) in the Landsat-5 classification, which likely explains why the area for shrub
was almost twice as large when SMA was not used than when SMA was used. Finally,
under SMA the omission and commission errors for most classes were greater than 25%
for both the Landsat-5 and WorldView-2 classifications, suggesting that pixels could not
be easily assigned to a single class because they had spectral characteristics of multiple
classes (i.e., they contained a mixture of cover types). These findings support the use of
SMA for rural landscape applications while expanding on previous studies describing the
use of SMA to improve urban land cover classifications in mixed feature areas (Lu and
Weng 2013; Tang and Pannelli 2009).

The SOC estimates for the top 10 cm in this study tend to be consistent with previous
studies regarding relative quantities associated with different cover types. In terms of
shrub and larch areas, which are made of the majority of the landscape in both classifica-
tions, higher SOC values for shrub are likely attributed to differences in above and
belowground allocation of C (Jackson et al. 1996). Larch forests often have relatively
higher aboveground C allocation, whereas shrubs tend to have deeper root profiles and
therefore higher belowground allocation. In a study on the relationship between SOC,
vegetation type, and climate, Jobbágy and Jackson (2000) reported similar conclusions,
suggesting that the vegetation type had a stronger influence on SOC than direct effects of
precipitation and temperature. As such, the land cover type has an important contribution
to SOC quantities and can therefore be used as a robust proxy measurement when
combining remote sensing with soil C estimates. However, as seen in the SE values for
the SOC quantities, there also tends to be high variability within the same cover type,
which may be attributed to the selection of sample sites to encompass variability and to be
representative of landscape heterogeneity.

The total SOC quantities for the Ambolikha watershed also tend to be consistent with,
but more locally specific than, previous studies quantifying Arctic SOC. In a northern
circumpolar assessment of soil C, Hugelius et al. (2013) estimated 2500 to 5000 g C m−2

in the top 10 cm for the region (including the Ambolikha watershed). Our maps for the top
10 cm show the majority of values between 4000 and 7500 g C m−2, suggesting that the
Hugelius et al. (2013) assessment, designed as a global dataset, may underestimate SOC
when used in localized applications owing to a coarser spatial resolution of data collection
and extrapolation. Although SOC tends to be highly variable, even within the same land
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cover types, our findings will likely help to improve this larger regional map by offering
more precise estimations of SOC for specific areas (and for providing tested and improved
satellite-based methodologies for doing so).

While the active layer thickness is not fully maximized until September (Frauenfeld
et al. 2004), examining the organic layer is informative because considerable below-
ground C is stored in this layer, despite its relatively shallow depth compared to perma-
frost (Hinkel et al. 2003). We were limited to active layer organic rather than the entire
organic layer because in lowland areas (floodplains, alases, and presumably lakes), the
total organic layer extended into the permafrost and the full depth was not measured.
However, our estimates of active layer organic SOC suggest that while floodplains
comprise a small area of the watershed, they contain the greatest amount of SOC relative
to other classes owing to a deep organic layer (and a shallow organic layer for larch and
shrub areas; Table 2). In the top 10 cm alone, floodplains had the smallest amount of SOC
relative to other vegetation classes. However, owing to the vertical distribution of SOC
and the associated differences in SOC quantities for each cover type, when the entire
organic layer is examined floodplains contain the greatest amount of SOC relative to the
other classes. Wet, lowland areas tend to have higher SOC content than shrub or larch
areas in the organic layer owing to an accumulation and concentration of dissolved
organic carbon (DOC) in the soil as it leaches through vegetation on the ground and is
transported by water from higher elevations (Schlesinger 1984). In addition, wet condi-
tions of these low-lying areas create an anaerobic environment that further slows the rate
of decomposition while increasing the buildup of SOC (Davidson and Janssens 2006).
Ping et al. (2008) found that SOC in lowland areas of the North American Arctic was up
to 18 times greater than in mountain soils.

Our measurements also allowed us to calculate SOC for the organic layer within the
active layer for July. For active layer organic SOC, Landsat-5 estimated 476.4 Gg
(without SMA) and 445.3 Gg (with SMA), WorldView-2 estimated 404.3 Gg (without
SMA) and 411.3 (with SMA), and the hybrid map estimated 421.9 Gg without SMA and
431.0 Gg with SMA. In terms of the SMA calculations, Landsat-5 overestimated by 5%,
WorldView-2 underestimated by 3%, and the hybrid map underestimated by 2%. Overall
these values reflect a snapshot of SOC values in July rather than at maximum active layer
thickness (occurring at the end of summer), therefore they likely underestimate total active
layer SOC. However, these findings further support a finer spatial resolution and the use
of SMA for land cover classification and calculations of SOC, as well as the integration of
both datasets to produce the most accurate SOC estimate.

The data and methods used to produce the classification maps and SOC estimates
impacted the results in several ways. A finer spatial resolution was able to better capture
the heterogeneity of the landscape and use an object-oriented approach to classify clusters
of pixels. Both classifications underestimated bare soil, floodplain, and alas areas, while
overestimating shrubs. The Landsat-5 classification only underestimated floodplain areas
by 1%, compared to 11% for WorldView-2, which may be attributed to the bands used by
both classifications. The Landsat-5 classification included the visible, near-infrared (NIR),
and short-wave infrared (SWIR) bands, while the WorldView-2 classification included
only the visible and NIR bands. The sensitivity of SWIR to soil and vegetation moisture
may explain why wet floodplains had a relatively low underestimation in the Landsat-
5 map.

The hybrid classification and SOC quantity maps were produced to overcome the
limitations of individual sensors and produce a more accurate map combining the
strengths of both Landsat-5 and WorldView-2 (Table 6; Figure 8). The SOC quantity
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for the top 10 cm is still overestimated (by 1%) when compared to SOC values from
individual field sites, but the degree of overestimation is less than that of Landsat-5 or
WorldView-2 alone. The degree of over or underestimation is based on individual pixel
values from locations where samples were collected, yet not all sites were used because a
portion of them fell outside of the study area and did not have a value in the SOC maps.
Consequently, the percent of over or underestimation is based on a limited number of sites
and serves only as an approximation for the rest of the map. However, the hybrid
classification map still has the highest overall classification accuracy and the SOC maps
have quantities closest to the field samples, justifying the use of the hybrid over individual
sensors alone. The hybrid map provides a preliminary method for data fusion techniques
that take advantage of the spatial resolution of WorldView-2 and the spectral resolution of
Landsat-5 to produce the best classification method and subsequent estimations of SOC.
By improving the classification accuracy of individual classes that performed best under
each sensor, the overall accuracy of the hybrid map and SOC estimates may indeed
continue to improve overestimates based on a single sensor. In this study, the hybrid map
accuracy is only 1% higher than that of the WorldView-2 map, which can be attributed to
the fact that it only incorporates one land cover class from the Landsat-5 map; however, in
studies combining a similar number of classes from each sensor (e.g., three classes from
WorldView-2 and three classes from Landsat-5), the advantages of a hybrid map would
further increase.

The remote nature of our study location limited our overall sampling regime, but
increasing the number of field sites for each cover type (particularly the shrub and alas
classes) in future studies would help improve and strengthen the findings of this work.
The broad characterization of the land cover type, chosen to correspond to our field data,
could be further refined and stratified to include stand density and age in larch areas, fire
history, elevation, and shrub genera, all of which may impact SOC. Our sampling sites
were selected to be representative of the variability of each land cover type, but the
consistent variation in SOC quantities (expressed through the SE) suggests that the
stratification of cover types used here potentially mask meaningful trends. Additionally,
obtaining measurements of the total organic layer depth (when it extends below the active
layer) would allow extrapolations of SOC within the entire organic layer, adding another
meaningful depth profile to this study. These full organic layer profiles would likely
expose patterns and SOC estimates less evident in the top 10 cm alone, as seen with the
high SOC values in floodplains when examining the active layer organic material in this
land cover class.

We further acknowledge the inability of optical remote sensing to directly observe soil
carbon and the associated limitation in deriving spatially extrapolated SOC estimates.
Aboveground biophysical proxy measurements, including land cover and vegetation types,
are commonly employed to address this issue (Jones, Guch, and Vonder Haar 1998;
Gould 2000; Done and Wooldridge 2004; Gibbs et al. 2007; Rocchini et al. 2014). While
vegetation biogeochemistry is a larger determinant of SOC lability and decomposition rate
than temperature and moisture at the local scale, there may be meteorological variables
influencing SOC, which are unaccounted for in this study (Jobbágy and Jackson 2000;
Raich and Tufekciogul 2000; Shi et al. 2014). Despite these limitations, we have provided a
preliminary assessment of how different remotely sensed data and classification methods
can impact map accuracy and the estimated SOC values that result from such maps. We
have also indicated that Landsat-5 overestimates SOC values more severely than
WorldView-2 for both the top 10 cm and active layer organic; therefore, we find here that
satellite data with a finer spatial resolution are optimal when mapping SOC at the landscape

22 D.E. Broderick et al.

D
ow

nl
oa

de
d 

by
 [

C
la

rk
 U

ni
ve

rs
ity

],
 [

K
ar

en
 F

re
y]

 a
t 1

0:
28

 1
3 

M
ar

ch
 2

01
5 



scale. Finally, we have suggested a way to overcome the limitations of individual sensors by
fusing data types to maximize the strengths of each.

The findings in this study are instructive for future work estimating SOC quantities in
similar landscapes. Satellite data with a high spatial resolution, coupled with object-based
classification and SMA, should be used when available to distinguish cover types and
derive SOC estimates to extrapolate point-based field measurements across larger areas of
the Arctic. As demonstrated, the coarser resolution of Landsat-5 resulted in an 8% over-
estimation of SOC, compared with a 3% underestimation by WorldView-2. Additionally,
integrating multiple sensors is useful in maximizing the strengths of different satellite data
to detect land cover and estimate SOC in heterogeneous Arctic landscapes, as seen with
the improved classification accuracy and SOC estimation (reduced to 1% overestimation)
under the hybrid map. Finally, our results regarding SOC quantities contribute to existing
estimates of SOC across the Arctic and provide precise numeric estimates on a regional
scale. The findings presented here provide multiple avenues for their future use, including
combining them with aboveground C quantities in the area to provide comprehensive
estimates of terrestrial C, comparing them with SOC stocks in other areas of the Arctic to
assess differences in C quantities, and integrating them with studies focusing on the
cycling of C between terrestrial, hydrologic, and atmospheric reservoirs.
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