1	Developing highly conserved microsatellite markers: a case study in the filamentous
2	fungal genus Aspergillus
3	
4	John G. Gibbons ¹ , Maren A. Klich ² , and Antonis Rokas ^{1*}
5	
6	
7	¹ Department of Biological Sciences, Vanderbilt University, VU Station B 35-1634,
8	Nashville, TN 37235, USA
9	² USDA, ARS, Southern Regional Research Center, 1100 Robert E. Lee Blvd, New
10	Orleans, LA 70124, USA
11	
12	
13	
14	*Author for correspondence: Antonis Rokas (Department of Biological Sciences,
15	Vanderbilt University, VU Station B 35-1634, Nashville, TN 37235, USA; Fax: +1-615-
16	343-6707; Email: antonis.rokas@vanderbilt.edu)
17	
18	Running Title: Aspergillus highly conserved microsatellites
19	Keywords: SSR, Ascomycota, population genetics, polymorphism, medically important
20	fungi
21	Words in text: ~1,200, 1 Figure, 1 Table

1 Abstract

2 Microsatellite markers are highly variable and very commonly used in population 3 genetics studies. However, microsatellite loci are typically poorly conserved over large 4 evolutionary distances and cannot be used across distantly related species. Thus, the 5 development of highly conserved microsatellite markers that amplify homologous loci in 6 distantly related species would increase efficiency and allow investigation of the same 7 questions in multiple lineages using the same marker set. Here we describe a protocol for 8 the development of such microsatellite markers from species with complete genome / 9 transcriptome sequences. Application of this protocol to the filamentous fungal genus 10 Aspergillus resulted in the generation of 9 and 11 variable microsatellite markers in two 11 phylogenetically distinct clades.

12

13 Main Text

14 Microsatellites are short units of DNA (1-6bp) repeated in tandem (Goldstein & 15 Schlötterer 1999). Partly due to their abundance in eukaryotic genomes (Katti et al. 2001) 16 and partly due their high levels of polymorphism (Ellegren 2004), microsatellite loci are 17 very popular genetic markers for molecular ecology studies. Because microsatellites are 18 usually poorly conserved between distantly related species (Barbara et al. 2007; Gibbons 19 & Rokas 2009), they are typically developed and applied within a single species or 20 between very close relatives (Barbara et al. 2007; Ellis & Burke 2007). However, there is 21 a growing need for the development of highly conserved microsatellites for two reasons: 22 (1) they allow more efficient experimental designs, and (2) they can be used to address

- the same question in multiple independently-evolving lineages using the same set of
 markers.
- 3

4 We used the filamentous fungal genus Aspergillus as a model for the development of 5 highly conserved microsatellite markers for several reasons. First, ten genomes from 6 eight species have been fully sequenced (Fedorova et al. 2008; Galagan et al. 2005; 7 Machida et al. 2005; Nierman et al. 2005; Payne et al. 2006; Pel et al. 2007; Rokas & 8 Galagan 2008; Rokas et al. 2007; Yu et al. 2005). Second, the genus has an evolutionary 9 history extending back well over 200 million years and exhibits varying levels of 10 sequence divergence (Fedorova et al. 2008; Galagan et al. 2005). Specifically, pair-wise 11 amino-acid divergence within the clades examined in this study is 21% and 16% for the 12 Flavi-Terrei and Fumigati-Clavati clades, respectively (Figure 1) (Rokas & Galagan 13 2008). Lastly, Aspergillus species exhibit diverse ecologies and reproductive strategies 14 (Balajee et al. 2008; Geiser 2009; Geiser et al. 1998; Nierman et al. 2005; Pel et al. 2007; 15 Pringle et al. 2005; Rokas 2009), making the genus an ideal candidate for comparative 16 population genetic studies between pairs of related species that differ with respect to life 17 history characteristics (e.g., pathogenicity, mode of reproduction). 18

19 We first attempted to construct genus-wide microsatellites. However, very few

20 microsatellites were conserved across all 8 sequenced Aspergillus transcriptomes and

21 were typically flanked by highly divergent sequences, hindering primer design. Thus, we

22 restricted our search for highly conserved primers to the *Flavi-Terrei* and *Fumigati-*

23 *Clavati* clades (Peterson 2008; Rokas *et al.* 2007) (Figure 1).

- 1

2	Microsatellite primers were designed from the fully sequenced transcriptomes of
3	Aspergillus species belonging to the Flavi-Terrei and Fumigati-Clavati clades separately
4	(Peterson 2008; Rokas et al. 2007). Section Flavi includes A. flavus and A. oryzae and
5	section Terrei includes A. terreus. Section Fumigati includes A. fumigatus and
6	Neosartorya fischeri (the sexual state of A. fisherianus) and section Clavati includes A.
7	clavatus and A. giganteus. We began by predicting orthologs between all species pairs
8	(within clades) using the reciprocal best BLAST hit algorithm, with an e-value cutoff of
9	1e ⁻⁰⁶ (Koonin 2005). Microsatellites were then detected <i>in silico</i> in each transcriptome
10	using the EMBOSS ETANDEM software (Rice et al. 2000). Next, conserved
11	microsatellite-containing transcripts were aligned using ClustalW (Chenna et al. 2003)
12	and spatial conservation of the microsatellite sequence was manually verified. Finally,
13	the ClustalW consensus sequence was used to design microsatellite primer pairs (two
14	forward and two reverse primers per locus) using the Primo Degenerate program of
15	Change Bioscience's ® BioToolKit 320 package
16	(www.changbioscience.com/biotoolkit2.html).
17	
18	Genomic DNA was extracted from cultures of sixty (A. flavus (9), A. oryzae (31) and A.
19	terreus (20)) and 41 (A. fumigatus (28), N. fischeri (4), A. clavatus (6) and A. giganteus
20	(3)) strains from the <i>Flavi-Terrei</i> and <i>Fumigati-Clavati</i> clades, respectively, using a
21	modified CTAB protocol (Stewart & Via 1993). Fungal strains were grown in potato
22	dextrose broth in a tissue culture rotator for 3-4 days at room temperature. Mycelium was

23 ground in liquid nitrogen and incubated in CTAB buffer. Following two organic

Molecular Ecology Resources

1	extractions with chloroform, DNA was precipitated with isopropanol, washed twice with
2	70% ethanol and resuspended in 1X TE buffer. To verify that the strains were not
3	contaminated, we sequenced approximately 580bp of the internal transcribed spaced
4	(ITS) region from all samples and performed BLAST (Altschul et al. 1990) searches
5	using the sequence of each strain against the NCBI non-redundant sequence database.
6	
7	Primer pairs were first screened to verify amplifications in 25 μ l reactions consisting of
8	20 ng of template DNA, 1 X Promega GoTaq [™] reaction buffer, 0.8 mM dNTPs, 2.5
9	μ M primers and 0.05 U Promega Flexi TM Taq polymerase. A touchdown PCR protocol
10	(Don et al. 1991) was implemented to limit nonspecific amplification and consisted of the
11	following cycling profile: 95°C for 3 min, 11 cycles of 94°C for 30 s, 65°C for 30 s (with
12	annealing temperature dropping 1°C per cycle) and 72°C for 45s, followed by 29 cycles
13	of 94°C for 30 s, 53°C for 30 s, 72°C for 45 s, followed by a final extension of 72°C for
14	20 min. Amplicons of two strains of each species were sequenced at Genewiz
15	(Northbrunswick, NJ) to confirm target sequence. Forward primers of successful pairs
16	(there were 9 successful primer pairs for the Flavi-Terrei clade and 11 for the Fumigati-
17	Clavati clade) were fluorescently labeled for use with the ABI DS-33 (G5) dye set (Table
18	1). PCR products were resolved on an ABO 3730xl Genetic Analyzer at Genewiz, using
19	GENESCAN 500 LIZ size standard. Genotypes were determined using Peak Scanner
20	Software v1.0 (ABI). Haploid diversity was calculated for each locus using GenAlEx
21	version 6.2 (Peakall & Smouse 2006). Haploid linkage disequilibrium was independently
22	calculated between all polymorphic loci using Multilocus 1.3b (Agapow & Bert 2001)
23	assessing significance via analysis of 999 randomized datasets.

-

2	All loci displayed variation in at least one species (Table 1). All loci exhibited multiple
3	alleles in all species from the <i>Flavi-Terrei</i> clade with one exception (locus 07647 in A.
4	flavus and A. oryzae; Table 1). In the Fumigati-Clavati clade, all loci exhibited multiple
5	alleles in A. fumigatus, whereas 7, 9 and 8 of the 11 loci displayed variation in N. fischeri,
6	A. clavatus and A. giganteus, respectively (Table 1). Haploid diversity ranged from 0.00-
7	0.79 in A. flavus/A. oryzae and 0.07-0.67 in A. fumigatus. Importantly, the average
8	haploid diversity for our "coding-region" microsatellite loci was comparable to the
9	average haploid diversity reported for "non-coding region" microsatellite loci developed
10	in A. flavus and A. oryzae (Grubisha & Cotty 2009; Tomimura et al. 2009). The same
11	three locus pairs in A. flavus/A. oryzae and A. terreus independently displayed evidence
12	of linkage disequilibrium (06964 with 09130, 09292 and 09308) after a multiple-test
13	corrected p value of 0.006 (0.05 / # polymorphic loci). However, locus 06964 resides on
14	a different contig from loci 09130, 09292 and 09308 and is separated by at least 1 Mb of
15	sequence. No statistical evidence of linkage was detected between any locus pairs in A.
16	fumigatus.

17

We have reported a novel and efficient method for developing microsatellite markers from two diverse clades of the filamentous fungal genus *Aspergillus*. Our work focused on microsatellite loci nested within coding regions because the lower conservation of flanking regions in non-coding sequence constrains the development of highly conserved markers. Nevertheless, a recently study identified ~5,800 conserved non-coding sequences in genome comparisons between *A. oryzae*, *A. fumigatus* and *A. nidulans*

1	(Galagan et al. 2005), a number very similar to the number of orthologous genes shared
2	by the three species (~5,900 genes), suggesting that this approach might also be useful in
3	the identification of highly conserved microsatellites from non-coding regions. Although
4	only a few eukaryotic clades of the tree of life are as densely sequenced as the genus
5	Aspergillus, the advent of next-generation DNA sequencing technologies and their use to
6	address ecological and evolutionary questions in non-model organisms (Gibbons et al.
7	2009; Hudson 2008; Rokas & Abbot 2009), suggest that our approach for generating
8	highly conserved microsatellites will soon be widely applicable.
9	
10	Acknowledgements
10 11	Acknowledgements We thank David M. Geiser, Arun Balajee, and Dr. Osamu Yamada and the National
10 11 12	Acknowledgements We thank David M. Geiser, Arun Balajee, and Dr. Osamu Yamada and the National Research Institute of Brewing in Higashi-Hiroshima, Japan for kindly providing
10 11 12 13	AcknowledgementsWe thank David M. Geiser, Arun Balajee, and Dr. Osamu Yamada and the NationalResearch Institute of Brewing in Higashi-Hiroshima, Japan for kindly providingAspergillus strains, and Sarah Melissa Witiak for kindly providing the ITS primers. This
10 11 12 13 14	AcknowledgementsWe thank David M. Geiser, Arun Balajee, and Dr. Osamu Yamada and the NationalResearch Institute of Brewing in Higashi-Hiroshima, Japan for kindly providingAspergillus strains, and Sarah Melissa Witiak for kindly providing the ITS primers. Thiswork was conducted in part using the resources of the Advanced Computing Center for
 10 11 12 13 14 15 	Acknowledgements We thank David M. Geiser, Arun Balajee, and Dr. Osamu Yamada and the National Research Institute of Brewing in Higashi-Hiroshima, Japan for kindly providing <i>Aspergillus</i> strains, and Sarah Melissa Witiak for kindly providing the ITS primers. This work was conducted in part using the resources of the Advanced Computing Center for Research and Education at Vanderbilt University. J.G.G. is funded by the Graduate
 10 11 12 13 14 15 16 	AcknowledgementsWe thank David M. Geiser, Arun Balajee, and Dr. Osamu Yamada and the NationalResearch Institute of Brewing in Higashi-Hiroshima, Japan for kindly providingAspergillus strains, and Sarah Melissa Witiak for kindly providing the ITS primers. Thiswork was conducted in part using the resources of the Advanced Computing Center forResearch and Education at Vanderbilt University. J.G.G. is funded by the GraduateProgram in Biological Sciences at Vanderbilt University. Research in A.R.'s lab is
 10 11 12 13 14 15 16 17 	AcknowledgementsWe thank David M. Geiser, Arun Balajee, and Dr. Osamu Yamada and the NationalResearch Institute of Brewing in Higashi-Hiroshima, Japan for kindly providingAspergillus strains, and Sarah Melissa Witiak for kindly providing the ITS primers. Thiswork was conducted in part using the resources of the Advanced Computing Center forResearch and Education at Vanderbilt University. J.G.G. is funded by the GraduateProgram in Biological Sciences at Vanderbilt University. Research in A.R.'s lab issupported by the Searle Scholars Program and the National Science Foundation (DEB-

1 Figure Legend

2	Figure 1. Phylogeny of Aspergillus species used in this study (Peterson 2008; Rokas &
3	Galagan 2008). Full genome data are available for all species in boldface. The strains
4	analyzed are as follows: A. <i>flavus</i> : $1-22^{\dagger}$, $7-4^{\dagger}$, $A111^{\dagger}$, $A120^{\dagger}$, $A150^{\dagger}$, $F35^{\dagger}$, $F60^{\dagger}$, $F67^{\dagger}$,
5	NRRL 3357 [†] ; <i>A. oryzae</i> : RIB 127 081031 [‡] , RIB 211 081031 [‡] , RIB 215 081031 [‡] , RIB
6	330 081125 [‡] , RIB 331 081125 [‡] , RIB 40 [†] , RIB 430 081031 [‡] , RIB 505 081031 [‡] , RIB 537
7	081031 [‡] , RIB 621 [‡] , RIB 624 081031 [‡] , RIB 629 081031 [‡] , RIB 630 081031 [‡] , RIB 632
8	081031 [‡] , RIB 633 081031 [‡] , RIB 638 081031 [‡] , RIB 642 081031 [‡] , RIB 646 081031 [‡] , RIB
9	910 081125 [‡] , RIB 919 081125 [‡] , RIB 934 081125 [‡] , RIB 935 081125 [‡] , RIB 936 081031 [‡] ,
10	RIB 940 081031 [‡] , RIB 941 081031 [‡] , RIB 944 081031 [‡] , RIB 949 081031 [‡] , RIB 1031
11	081031 [‡] , RIB 1032 081031 [‡] , RIB 3005 081125 [‡] , NRRL 00469 [†] ; <i>A. terreus</i> : NIH2624 [†] ,
12	UAB2 [§] , UAB3 [§] , UAB4 [§] , UAB6 [§] , UAB8 [§] , UAB10 [§] , UAB11 [§] , UAB12 [§] , UAB14 [§] ,
13	UAB15 [§] , UAB17 [§] , UAB19 [§] , UAB22 [§] , UAB26 [§] , UAB29 [§] , UAB30 [§] , UAB31 [§] , UAB34 [§] ,
14	UAB36 [§] ; A. clavatus: 18 [¥] , 19 [¥] , 315 [¥] , 1423 [¥] , 2373 [¥] , NRRL 1 [†] ; A. giganteus: 52 [¥] , 355 [¥] ,
15	373 [¥] ; A. fumigatus: 2006 [¥] , 2569 [¥] , 5860 [§] , B5355 [§] , B5856 [§] , B5357 [§] , B5857 [§] , B5359 [§] ,
16	B5361 [§] , B5602 [§] , B5852 [§] , B5854 [§] , B5861 [§] , B5865 [§] , B6069 [§] , B6070 [§] , B6072 [§] , B6073 [§] ,
17	$B6074^{\$}, B6075^{\$}, B6076^{\$}, B6077^{\$}, B6078^{\$}, B6081^{\$}, B6083^{\$}, B6269^{\$}, CEA10^{\dagger},$
18	NRRL5109 [§] , <i>N. fischeri</i> : 2192 [¥] , 2388 [¥] , 2389 [¥] , NRRL 181 [†] ([†] Centraalbureau voor
19	Schimmelcultures, Utrecht, The Netherlands; [¥] USDA ARS, Southern Regional Research
20	Center, New Orleans, LA, USA; [‡] National Research Institute of Brewing in Higashi-
21	Hiroshima, Japan; [§] Center for Disease Control and Prevention. Atlanta, USA).

1 **References**

2	Agapow PM, Burt A (2001) Indices of multilocus linkage disequilibrium. Molecular
3	<i>Ecology Notes</i> 1 , 101-102.
4	Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment
5	search tool. J Mol Biol 215, 403-410.
6	Balajee SA, de Valk HA, Lasker BA, Meis JFGM, Klaassen CHW (2008) Utility of a
7	microsatellite assay for identifying clonally related outbreak isolates of
8	Aspergillus fumigatus. Journal of Microbiological Methods 73, 252-256.
9	Barbara T, Palma-Silva C, Paggi GM, et al. (2007) Cross-species transfer of nuclear
10	microsatellite markers: potential and limitations. <i>Molecular Ecology</i> 16 , 3759-
11	3767.
12	Chenna R, Sugawara H, Koike T, et al. (2003) Multiple sequence alignment with the
13	Clustal series of programs. Nucleic Acids Res 31, 3497-3500.
14	Don RH, Cox PT, Wainwright BJ, Baker K, Mattick JS (1991) 'Touchdown' PCR to
15	circumvent spurious priming during gene amplification. Nucleic Acids Res 19,
16	4008.
17	Ellegren H (2004) Microsatellites: Simple sequences with complex evolution. <i>Nature</i>
18	Reviews Genetics 5, 435-445.
19	Ellis JR, Burke JM (2007) EST-SSRs as a resource for population genetic analyses.
20	<i>Heredity</i> 99 , 125-132.
21	Fedorova ND, Khaldi N, Joardar VS, et al. (2008) Genomic islands in the pathogenic
22	filamentous fungus Aspergillus fumigatus. PLoS Genet 4, e1000046.
23	Galagan JE, Calvo SE, Cuomo C, et al. (2005) Sequencing of Aspergillus nidulans and
24	comparative analysis with A. fumigatus and A. oryzae. Nature 438, 1105-1115.
25	Geiser DM (2009) Sexual structures in Aspergillus: morphology, importance and
26	genomics. Med Mycol 47 Suppl 1, S21-26.
27	Geiser DM, Taylor JW, Ritchie KB, Smith GW (1998) Cause of sea fan death in the
28	West Indies. <i>Nature</i> 394 , 137-138.
29	Gibbons JG, Janson EM, Hittinger CT, et al. (2009) Benchmarking next-generation
30	transcriptome sequencing for functional and evolutionary genomics. Mol Biol
31	Evol, in press.
32	Gibbons JG, Rokas A (2009) Comparative and functional characterization of intragenic
33	tandem repeats in 10 Aspergillus genomes. Mol Biol Evol 26, 591-602.
34	Goldstein DB, Schlötterer C (1999) Microsatellites : evolution and applications Oxford
35	University Press, Oxford ; New York.
36	Grubisha LC, Cotty PJ (2009) Twenty-four microsatellite markers for the aflatoxin-
37	producing fungus Aspergillus flavus. Molecular Ecology Resources 9, 264-267.
38	Hudson ME (2008) Sequencing breakthroughs for genomic ecology and evolutionary
39	biology. Molecular Ecology Resources 8, 3-17.
40	Katti MV, Ranjekar PK, Gupta VS (2001) Differential distribution of simple sequence
41	repeats in eukaryotic genome sequences. <i>Mol Biol Evol</i> 18 , 1161-1167.
42	Koonin EV (2005) Orthologs, paralogs, and evolutionary genomics. Annu Rev Genet 39,
43	309-338.
44	Machida M, Asai K, Sano M, et al. (2005) Genome sequencing and analysis of
45	Aspergillus oryzae. Nature 438 , 1157-1161.

1	Nierman WC, Pain A, Anderson MJ, et al. (2005) Genomic sequence of the pathogenic
2	and allergenic filamentous fungus Aspergillus fumigatus. Nature 438 , 1151-1156.
3	Payne GA, Nierman WC, Wortman JR, et al. (2006) Whole genome comparison of
4	Aspergillus flavus and A. oryzae. Med Mycol 44 Suppl, 9-11.
5	Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic
6	software for teaching and research. <i>Molecular Ecology Notes</i> 6, 288-295.
7	Pel HJ, de Winde JH, Archer DB, et al. (2007) Genome sequencing and analysis of the
8	versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol.
9	Peterson SW (2008) Phylogenetic analysis of Aspergillus species using DNA sequences
10	from four loci. Mycologia 100, 205-226.
11	Pringle A, Baker DM, Platt JL, et al. (2005) Cryptic speciation in the cosmopolitan and
12	clonal human pathogenic fungus Aspergillus fumigatus. Evolution 59, 1886-1899.
13	Rice P, Longden I, Bleasby A (2000) EMBOSS: the European Molecular Biology Open
14	Software Suite. Trends Genet 16, 276-277.
15	Rokas A (2009) The effect of domestication on the fungal proteome. Trends Genet 25,
16	60-63.
17	Rokas A, Abbot P (2009) Harnessing genomics for evolutionary insights. Trends in
18	<i>Ecology & Evolution</i> 24 , 192-200.
19	Rokas A, Galagan JE (2008) The Aspergillus nidulans genome and a comparative
20	analysis of genome evolution in Aspergillus. In: The Aspergilli: Genomics,
21	Medical Applications, Biotechnology, and Research Methods (eds. Goldman GH,
22	Osmani SA), pp. 43-55. CRC Press.
23	Rokas A, Payne G, Fedorova ND, et al. (2007) What can comparative genomics tell us
24	about species concepts in the genus Aspergillus? Stud Mycol 59, 11-17.
25	Stewart CN, Via LE (1993) A Rapid Ctab DNA Isolation Technique Useful for Rapid
26	Fingerprinting and Other Pcr Applications. <i>Biotechniques</i> 14, 748-&.
27	Tomimura K, Iwashita K, Yamada O, Kobayashi K (2009) Development of VNTR
28	markers for three Aspergillus species used in brewing. Molecular Ecology
29	<i>Resources</i> 9, 613-615.
30	Yu J, Cleveland TE, Nierman WC, Bennett JW (2005) Aspergillus flavus genomics:
31	gateway to human and animal health, food safety, and crop resistance to diseases.
32	Rev Iberoam Micol 22, 194-202.
33	
34	

Molecular Ecology Resources

Table 1. Characteristics of microsatellite loci from the *Flavi-Terrei* (first panel) and *Fumigati-Clavati* (second panel) clades, including forward and reverse primer sequences, reference transcript IDs from which primers were designed, fluorescently labeled dye, conensus repeat motif, allele size range, number of alleles (*N_A*) and haploid diversity (*h*). Because *A. oryzae* is a domesticated ecotype of *A. flavus* (Geiser et al. 1998a; Rokas 2009; Rokas et al. 2007), data from the two organisms were combined. For the *Fumigati-Clavati* clade, haploid diversity is only reported for *A. fumigatus*. All highly conserved microsatellite markers reported in this study are distinct from previously developed *A. fumigatus*, *A. flavus* and *A. oryzae* species-specific markers (Balajee et al. 2008; Grubisha & Cotty 2009; Pringle et al. 2005; Tomimura et al. 2009).

Species	Locus Name	Primer Sequence (5'-3')	Reference Transcript ID	Label	Consensus Repeat Motif	Allele Size Range (bp)	N _A	h
A. flavus/A.oryzae	03100	F: RGCGGAAARCARGCC	AFL2G_03100.2, AO090012000172	NED	AAG	323 - 341	4	0.19
A. terreus		R: TSGAGCTGAGACGRTC	ATEG_04806.1			320 - 338	3	0.27
-	03661	F: GGAARGACAAACGRCGC	AFL2G_03661.2, AO090012000799	NED	AAG	413 - 416	2	0.05
		R: CGTCCRATWCKTGCMGC	ATEG_04066.1			398 - 413	2	0.10
-	04631	F: CGTCGCARTTCACSTC	AFL2G_04631.2, AO090023000819	NED	GCA	336 - 356	6	0.71
		R: GTCTCMCGCTTCTTGG	ATEG_05447.1			330 - 357	2	0.10
-	06964	F: AACAGGCCCGTGARG	AFL2G_06964.2, AO090026000289	NED	CAG	480 - 492	3	0.30
		R: GRGCAATSGASGTGG	ATEG_01306.1			480 - 492	2	0.10
-	07647	F: GCGGTCAGCAGYTGAACC	AFL2G_07647.2, AO090001000487	NED	CAG	235	1	0.00
		R: CGSAGAATACCGGCSACK	ATEG_02933.1			231 - 234	2	0.10
-	09130	F: GCTGCAAAAGCTGCGCG	AFL2G_09130.2, AO090001000653	VIC	GAA	438 - 441	2	0.05
		R: CGGGGTCTTKGGRAACG	ATEG_06732.1			414 - 441	2	0.11
-	09292	F: GCMGAGAAACAAGCCC	AFL2G_09292.2, AO090001000672	VIC	AGA	340 - 361	2	0.05

-

		R: CYGCTTCACYTTGKCCACC	ATEG_06748.1			330 - 339	3	0.19
	09308	F: ACKAGTTGGGCTACSG	AFL2G_09308.2, AO090102000614	VIC	CAG	353 - 365	4	0.31
		R: GCTCTCRTACTCRAGG	ATEG_08001.1			361 - 373	5	0.55
	09988	F: GCYGGMTGTATCATGG	AFL2G_09988.2, AO090038000283	VIC	GCA	368 - 386	7	0.79
		R: WACCATCCCYCCRTAC	ATEG_00332.1			373 - 382	2	0.10
A. fumigatus	1g10200) F: CAACTACGCGCGGGTTCGAG	Afu1g10200	6FAM	GAG	314 - 317	2	0.07
N. fischeri	1	R: CTTGCGYCGCTTCTTGACCC	NFIA_015450			312 - 315	2	
A. clavatus	T		ACLA_025340			332 - 335	2	
A. giganteus	7		N/A			369 - 372	2	
	1g11490	F: GTRTCACCSAGYSTRGTTCC	Afu1g11490	6FAM	AGA	313 - 328	5	0.67
		R: CCRAGCCATGTCAATGGC	NFIA_014080			324	1	
			ACLA_024160			316	1	
			N/A			307 - 310	2	
	1g12120) F: GARGCTCGYCGAAARGCC	Afu1g12120	PET	CAGGGA	349 - 376	5	0.60
		R: GGCTCCTTYGGWGTARCGG	NFIA_013390			376	1	
			ACLA_023350			327 - 381	3	
			N/A			313 - 391	2	
	1g14430) F: YCARTGGTACTGGTTCGCC	Afu1g14430	PET	CGGCTC	295 - 313	2	0.14
		R: CTKCTCYTCAGCRSTGCC	NFIA_010990			312 - 345	4	

	ACLA_020990			362 - 368	2	
	N/A			300 - 306	3	
2g13290 F: MRGCGASGARGCCCCKCTCAC	Afu2g13290	6FAM	CAG	194 - 203	3	0.20
R: GCTGWGCGGCAGGRGCR	NFIA_088470			194 - 197	2	
	ACLA_072090			234 - 240	3	
	N/A			242 - 254	3	
3g09600 F: CSGATTACGATGGCGARGAAGARCC	Afu3g09600	PET	AGA	530 - 542	4	0.45
R: ACRTACAYKCCTTCCCTCTGGCGR	NFIA_067690			504 - 540	2	
	ACLA_037370			542 - 596	3	
	N/A			591 - 600	2	
4g02990 F: AYGCCGARTGGCARCARAC	Afu4g02990	PET	AAG	311 - 317	3	0.59
R: CTTTTGCTCRAGBTCGGYC	NFIA_030470			310	1	
	ACLA_055890			316 - 322	2	
	N/A			307 - 322	2	
4g09070 F: TYGCCTTGRTMTCAGGCGG	Afu4g09070	6FAM	GAA	289 - 355	6	0.66
R: CGGCTTCGTAGAGCGG	NFIA_107100			235 - 238	2	
	ACLA_048430			272 - 287	2	
	N/A			258	1	
5g01780 F: GATTGCYCGGGAGAGCATC	Afu5g01780	PET	CAG	511 - 520	3	0.14

R: CTCCAGSGGWCTTTTSTCC	NFIA_040320			513 - 516	2	
	ACLA_003540			609 - 615	3	
	N/A			531 - 594	3	
6g02510 F: TSGTGGTTCCKGAGTGGG	Afu6g02510	6FAM	TCTCAG	313 - 328	3	0.14
R: TCATCCGCKCGMGGYTGG	NFIA_048780			322 - 334	2	
	ACLA_097970			323 - 368	4	
	N/A			357	1	
7g04870 F: CTACGCCGGYCAYCAAGY	Afu7g04870	6FAM	AAG	233 - 251	5	0.51
R: ASGARGCGGARAAGTTGCC	NFIA_025830			238	1	
	ACLA_006570			254	1	
	N/A			245	1	