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African ape clade, it is the panins and gorillines that
innovated and the hominins that were conservative.
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Genome-Wide Association Analysis
Identifies Loci for Type 2 Diabetes
and Triglyceride Levels
Diabetes Genetics Initiative of Broad Institute of Harvard and MIT, Lund University,
and Novartis Institutes for BioMedical Research*†

New strategies for prevention and treatment of type 2 diabetes (T2D) require improved insight into
disease etiology. We analyzed 386,731 common single-nucleotide polymorphisms (SNPs) in 1464
patients with T2D and 1467 matched controls, each characterized for measures of glucose
metabolism, lipids, obesity, and blood pressure. With collaborators (FUSION and WTCCC/UKT2D),
we identified and confirmed three loci associated with T2D—in a noncoding region near CDKN2A
and CDKN2B, in an intron of IGF2BP2, and an intron of CDKAL1—and replicated associations near
HHEX and in SLC30A8 found by a recent whole-genome association study. We identified and
confirmed association of a SNP in an intron of glucokinase regulatory protein (GCKR) with serum
triglycerides. The discovery of associated variants in unsuspected genes and outside coding regions
illustrates the ability of genome-wide association studies to provide potentially important clues to
the pathogenesis of common diseases.

Type 2 diabetes, obesity, and cardiovascular
risk factors are caused by a combination
of genetic susceptibility, environment, be-

havior, and chance. Whole-genome association
studies (WGAS) offer a new approach to gene
discovery unbiased with regard to presumed
functions or locations of causal variants. This
approach is based on Fisher’s theory for additive
effects at common alleles (1); human heterozy-
gosity being substantially attributable to com-
mon ancestral variants (2); and the hypothesis
that variants influencing common, late-onset dis-
eases of modernity may not have been subject

to purifying selection, and has been made pos-
sible by genomic advances such as the human
genome sequence, SNP and HapMap databases,
and genotyping arrays (3).

We studied 1464 patients with T2D and
1467 controls from Finland and Sweden, each
characterized for 18 clinical traits: anthropomet-
ric measures, glucose tolerance and insulin se-
cretion, lipids and apolipoproteins, and blood
pressure. The samples were both population-
based [1022 T2D cases and 1075 euglycemic
controls, matched on gender, age, body mass
index, and region of origin] and family-based
(326 sibships discordant for T2D; 442 cases and
392 euglycemic controls; tables S1 and S2).

Genotyping of 500,568 SNPs was attempted
in each sample. Overall call rate for passing
SNPs was 99.2%. After filtering rare and mono-
morphic variants (n = 69,696 SNPs) and

applying stringent quality-control filters, high-
quality genotypes for 386,731 common SNPs
were obtained (4). To extend the set of putative
causal alleles tested for association, we devel-
oped 284,968 additional multimarker (haplo-
type) tests based on these SNP genotypes (5, 6).
The 671,699 allelic tests capture (correlation co-
efficient r2 ≥ 0.8) 78% of common SNPs in
HapMap CEU (3).

Each SNP and haplotype test was assessed
for association to T2D and each of 18 traits with
the software package PLINK (http://pngu.mgh.
harvard.edu/purcell/plink/). For T2D, a weighted
meta-analysis was used to combine results for
the population-based and family-based subsam-
ples (4). For quantitative traits, multivariable
linear or logistic regression with or without co-
variates was performed (4). Association results
for each SNP, haplotype test, and phenotype are
available (www.broad.mit.edu/diabetes/).

In genome-wide analysis involving hundreds
of thousands of statistical tests, modest levels of
bias imposed on the null distribution can over-
whelm a small number of true results. We used
three strategies to search for evidence of sys-
tematic bias from unrecognized population struc-
ture, the analytical approach, and genotyping
artifacts (7, 8). First, we examined the distribu-
tion of P-values in the population-based sam-
ple, observing a close match to that expected
for a null distribution (genomic inflation factor
lGC = 1.05 for T2D). Second, we calculated
association statistics using EIGENSTRAT, an
independent method based on principal compo-
nents analysis (9); P-values for T2D derived with
the two methods were nearly identical (r2 = 0.95,
Fig. 1A). Third, 114 SNPs from the extreme tail
of P-values for T2D were genotyped with an
independent technology. Genotype concordance
was 99.5%, indicating that even the extreme tail
of low P-values is not substantially contaminated
by genotyping artifacts.

*To whom correspondence should be addressed: David
Altshuler, Leif Groop, Thomas E. Hughes. E-mail: altshuler@
molbio.mgh.harvard.edu (D.A.); leif.groop@med.lu.se (L.G.);
thomase.hughes@novartis.com (T.E.H.)
†All authors with their contributions and affiliations appear
at the end of this paper.
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Although the observed P-value distribution
closely matches expectation over most of its range
(1.0 > P > 0.01), an excess of low P-values is
observed (Fig. 1B and table S3). To evaluate
the significance of this excess, we generated 1000
permuted whole-genome analyses in which
phenotype data were randomized within matched
case-control groups (4). For P-values between
0.01 and 0.001, 6370 SNPs were observed, as
compared to an average of 5917 [95% confi-
dence interval (CI): 5714 to 6128] in permuted
scans (Z = 4.3; P < 0.001). For P < 10−4, 125
SNPs were observed, compared to 94 [95% CI:
61 to 121] in permuted scans (Z = 2.4, P < 0.02).
These observations support a model in which
there are few common variants with large effects,
but a substantial number with modest effects of
the sort that generate P-values between 0.01 and
10−7 in 3000 samples.

Given this distribution, and because WGAS
are hypothesis generating, we sought replication
in independent samples. An initial set of 107
SNPs (table S4) was selected on the basis of our
study (n = 89) and by comparison of our results
with WGAS of T2D (n = 18) by Wellcome Trust
Case Control Consortium (WTCCC) (10) and
Finland–United States Investigation of NIDDM
Genetics (FUSION) (11). Each SNP was geno-
typed in 10,850 additional subjects (T2D and
controls) from Sweden, Poland, and the United
States (table S1) and analyzed for association to
T2D under the same genetic model as the scan (4).

These results, with those from FUSION (11)
and WTCCC/UKT2D (10, 12), identify SNPs at
three previously unknown loci as influencing risk
of T2D with P < 10−10 (Table 1 and tables S4
and S5).

A SNP on chromosome 9p (rs10811661),
125 kb from the nearest annotated genes
(CDKN2A/CDKN2B), was selected on the basis
of strong association to T2D in our WGAS

(rank #51) (Table 1; Fig. 2A). Combined anal-
ysis of data from our scan and replication sam-
ples provides strong evidence for association:
odds ratio (OR) = 1.20, 95% CI 1.07 to 1.36,
P = 5.4 × 10−8. Independent evidence of asso-
ciation for the same SNP, phenotype, and genetic
model was obtained by WTCCC/UKT2D (P =
10−7) and FUSION (P = 0.001) (10–12). No
association with measured quantitative metabol-
ic traits was observed in our scan or replication
samples.

An intriguing aspect of this association is its
location far from any annotated gene. The region
of association is limited to a 9-kb region flanked
by strong recombination hot-spots, in which there
are multiple conserved noncoding sequences but
no known genes or microRNAs. A member of
the nearest gene cluster, cyclin-dependent kinase
inhibitor-2A (CDKN2A), plays a role in pancre-
atic islet regenerative capacity (13).

SNPs in the second intron of IGF2BP2 were
selected for replication on the basis of joint
analysis of the three scans (10–12) (Fig. 2B).
Evidence was weak in our initial scan (P =
0.034 for rs4402960), but pronounced in the
replication samples (P = 5.5 × 10−9, Table 1).
Strong evidence was obtained for the same SNP,
phenotype, and genetic model by WTCCC/
UKT2D (P = 10−4) and FUSION (P = 10−4)
(10–12). These SNPs showed no association to
measured quantitative metabolic traits in our
scan or replication samples.

Insulin-like growth factor 2 binding protein 2
(IGF2BP2) belongs to a family of three mRNA
binding proteins with affinity for leader elements
in the untranslated regions of IGF-2 transcripts.
Family members bind with weak sequence spec-
ificity and are implicated in transport of RNA
targets to enable protein synthesis at specific
locations in the cell (14). The IGFBP homolog
is necessary for pancreas development in Xeno-

pus (15), and IGF2BP3 transgenic mice exhibit
acinar-ductal pancreatic metaplasia (16).

We selected a SNP in a 90-kb intron within
CDKAL1 (rs7754840) for replication on the basis
of nominal association in our scan, WTCCC
(10), and FUSION (11) (Table 1). Analysis of
the scan and replication samples (Fig. 2C)
supports association under the same phenotype
and genetic model (OR = 1.08, 95% CI 1.03 to
1.14, combined P = 0.0024; Table 2), as does
evidence from WTCCC/UKT2D (10, 12) (P =
10−8) and FUSION (11) (P = 0.01) (Table 1).
The risk allele was nominally associated with
reduced insulin secretion in controls from our
scan (P = 0.01 for insulinogenic index).

CDKAL1 is homologous to CDK5RAP1, an
inhibitor of cyclin-dependent kinase CDK5;
CDK5 transduces glucotoxicity signals in pan-
creatic beta cells (17). As with the other var-
iants, how SNPs in CDKAL1 might influence
risk of T2D awaits further investigation.

Common variation in an intron of TCF7L2
has been reproducibly associated with T2D (18).
In our WGAS, TCF7L2 was the third-ranked
association (Fig. 2D, P < 3 × 10−6) and was
among the top results in each of the three other
well-powered whole-genome scans of T2D
(10, 11, 19) (Table 1). The consistency of these
findings suggests that TCF7L2 is the single
largest effect of a common SNP on T2D risk in
European populations. Associations in KCNJ11
(20) and PPARG (21) were not strongly observed
in any single scan, but across the three scans
provided P < 10−10 and P < 10−6, respectively
(Table 1).

In 2007, Sladek et al. (19) reported four
previously unknown associations to T2D in a
WGAS, two with particularly strong evidence of
replication (HHEX and SLC30A8). We confirm
association at HHEX (Table 1; Fig. 2E) in our
scan (OR = 1.15, P = 0.01) and in replication
genotyping (P = 10−3), as do WTCCC/UKT2D
(P = 10−6) (10, 12) and FUSION (P = 0.03)
(11). At the zinc transporter SLC30A8, our data
were less compelling (P = 0.90 in our scan and
P = 0.01 in replication samples), but convincing
evidence was obtained by WTCCC/UKT2D
(10, 12) (P = 10−3) and FUSION (P = 10−5)
(11). We observed no evidence for association at
LOC387761 (n = 7401, OR = 1.00, P = 0.93 for
rs7480010) and EXT2-ALX4 (n = 7401, OR =
1.06, P = 0.12 for rs3740878), nor was evidence
obtained by WTCCC (10) or FUSION (11).

We observed intriguing replication signals
at additional loci (10, 11). For example,
rs17044137 in FLJ393370 was associated with
T2D in our scan (OR = 1.27, P = 3.7 × 10−4)
and replication (OR = 1.09, P = 3.1 × 10−3), but
not in WTCCC (10) or FUSION (11) (Table 1).
Similarly, rs6698181 in PKN2 demonstrated evi-
dence in our scan and replication samples (P =
5.3 × 10−5), and in FUSION (11) (P = 10−3), but
not WTCCC (10) (P = 0.93). Genotyping in
more samples is needed to resolve these and other
hypotheses.

Fig. 1. P-value distribution for the association with type 2 diabetes. (A) P-values obtained from the
Cochran-Mantel-Haenszel stratified test implemented in PLINK are plotted (as –log10 values) as a function
of the corresponding P-value computed by EIGENSTRAT in the population-based case/control sample (n =
2097). These distributions are strongly correlated (r2 = 0.95). (B) P-P plot for the combined (Z score)
association analysis of type 2 diabetes in the population-based case/control sample and the discordant
sibships (n = 2,931). The P-values for the corresponding Z scores are plotted (as –log10 values) as a
function of P-values from the expected (uniform) null distribution. The observed distribution matches the
expected distribution closely and shows an excess in the tail at P < 10−3.
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Table 1. Association results for type 2 diabetes. Odds ratios (OR), 95% confidence intervals (CI), and P-values are given for SNPs from Diabetes Genetics Initiative (DGI) scan, replication samples, and data
from the WTCCC/UKT2D (10,12) and FUSION (11) studies. Proxies include: for rs7754840, rs10946398 (r2 = 1, WTCCC/UKT2D); for rs7903146, rs7901695 (r2 = 0.92, WTCCC/UKT2D); and for rs5219,
rs5215 (r2 = 0.99, WTCCC/UKT2D).

SNP Chr. Risk
allele*

Nearest
gene

DGI WTCCC/UKT2D|| FUSION|| All studies
Sample size
for 80%
power¶

Genome scan Replication‡ Combined

Freq.† OR P-value OR P-value§ OR
(95%CI)

P-value OR P-value OR P-value OR (95%CI) P-value

n = 2931 n = 10,850 n = 13,781 n ≤ 13,965 n ≤ 4808 n ≤ 32,554
Novel loci
rs10811661 9 T CDKN2B 0.83 1.37

(1.18–1.59)
3.6×10−5 1.16

(1.09–1.27)
2.2×10−5 1.20

(1.12–1.28)
5.4×10−8 1.19

(1.11–1.28)
4.9×10−7 1.20

(1.07–1.36)
2.2×10−3 1.20

(1.14–1.25)
7.8×10−15 ~3400

rs4402960 3 T IGF2BP2 0.29 1.14
(1.01–1.28)

0.034 1.18
(1.12–1.25)

5.5×10−9 1.17
(1.11–1.23)

1.7×10−9 1.11
(1.05–1.16)

1.6×10−4 1.18
(1.08–1.28)

2.4×10−4 1.14
(1.11–1.18)

8.9×10−16 ~4300

rs1470579 3 C IGF2BP2 0.30 1.12
(1.00–1.26)

0.052 1.19
(1.12–1.26)

2.1×10−9 1.17
(1.11–1.23)

1.3×10−9 – – – – – – –

rs7754840 6 C CDKAL1 0.31 1.17
(1.04–1.31)

7.5×10−3 1.06
(1.00–1.12)

0.024 1.08
(1.03–1.14)

2.4×10−3 1.16
(1.10–1.22)

1.3×10−8 1.12
(1.03–1.22)

9.5×10−3 1.12
(1.08–1.16)

4.1×10−11 ~4800

Previously published loci
rs1111875 10 C HHEX 0.53 1.15

(1.04–1.29)
0.01 1.13

(1.04–1.23)
6.0×10−3 1.14

(1.06–1.22)
1.7×10−4 1.13

(1.07–1.19)
4.6×10−6 1.10

(1.01–1.19)
0.025 1.13

(1.08–1.17)
5.7×10−10 ~4200

rs13266634 8 C SLC30A8 0.65 1.01
(0.90–1.31)

0.92 1.12
(1.02–1.23)

0.014 1.07
(1.00–1.16)

0.047 1.12
(1.05–1.18)

7.0×10−5 1.18
(1.09–1.29)

6.8×10−5 1.12
(1.07–1.16)

5.3×10−8 ~5400

rs7903146 10 T TCF7L2 0.26 1.33
(1.17–1.50)

5.4×10−6 1.40
(1.32–1.49)

3.9×10−28 1.38
(1.31–1.46)

2.3×10−31 1.37
(1.25–1.49)

6.7×10−13 1.34
(1.21–1.49)

1.4×10−8 1.37
(1.31–1.43)

1.0×10−48 ~800

rs5219 11 T KCNJ11 0.47 1.14
(1.03–1.28)

0.012 1.14
(1.08–1.21)

2.6×10−6 1.15
(1.09–1.21)

1.0×10−7 1.15
(1.05–1.25)

1.3×10−3 1.11
(1.02–1.21)

0.014 1.14
(1.10–1.19)

6.7×10−11 ~3700

rs1801282 3 C PPARG 0.86 1.02
(0.87–1.19)

0.83 1.11
(1.02–1.19)

6.2×10−3 1.09
(1.01–1.16)

0.019 1.23
(1.09–1.41)

1.3×10−3 1.20
(1.07–1.33)

1.4×10−3 1.14
(1.08–1.20)

1.7×10−6 ~7900

Interesting for follow-up
rs17044137 4 A FLJ39370 0.23 1.27

(1.11–1.44)
3.7×10−4 1.09

(1.03–1.17)
3.1×10−3 1.13

(1.06–1.19)
4.1×10−5 1.01

(0.92–1.11)
0.90 1.02

(0.89–1.17)
0.79 – – –

rs6698181 1 T PKN2 0.29 1.17
(1.04–1.32)

7.6×10−3 1.09
(1.03–1.16)

9.7×10−4 1.11
(1.05–1.16)

5.3×10−5 1.00
(0.92–1.09)

0.93 1.21
(1.06–1.37)

4.1×10−3 – – –

*Alleles are indexed to the forward strand of NCBI Build 35. †Frequency of risk allele based on controls in DGI genome scan. ‡rs1111875 and rs13266634 genotyped in U.S. and Polish replication samples (n = 4470). §Replication P-
value is one-tailed for additive model; all other P-values reported are additive and two-tailed. ||Results reported for same SNP, or proxy with r2 > 0.95 (in HapMap-CEU) for FUSION and WTCCC except for TCF7L2; different SNPs selected based on
genotyping platform (FUSION) or lowest P-value (FUSION,WTCCC/UKT2D). ¶Sample size required for 80% power (nominal a = 0.05) calculated with the pooled OR estimate from DGI, FUSION, WTCCC studies (n > 32,000), assuming an equal
number of cases and controls, allele frequency in controls (DGI genome scan), and T2D prevalence of 10% (consistent with estimates in adults from the population-based Botnia PPP study in Finland).
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For validated loci, variability in significance
across studies may appear surprising, and sug-
gestive of heterogeneity. However, formal tests
for heterogeneity in effect size were not signif-
icant (P > 0.05). Moreover, in a simulated asso-
ciation study of 1500 cases and 1500 controls,
allele frequency of 20%, and an OR of 1.20 per
copy, the median P-value was 10−4, but ~5% of
simulations P-values were >0.025, and 5% of
P-values were <10−7. Thus, substantial variabil-
ity in rank and significance is expected where
power is modest, particularly if a SNP is selected
based on the study with an extreme P-value.

We also performed genome-wide analyses for
18 clinical traits (table S2). The distribution of
P-valueswas similar to that observed for T2D,with
close match to expectation under the null hypoth-
esis and a modest excess of signals in the tail (table
S3). We observed strong evidence (P < 10−4, rank
in the top 100) for six previously reported common
variants that influence lipid levels (table S3).

A previously unknown association with
triglycerides was observed for rs780094 (P =
3.7 × 10−8), explaining 1% of residual variance
in triglyceride levels (Fig. 2F; fig. S1A). This
single SNP was tested in 5217 individuals from

the Malmö Diet and Cancer Study, Cardiovas-
cular Arm (MDC-CVA); the association repli-
cated (P = 8.7 × 10−8) (Table 2, fig. S1B). The
association was observed by FUSION (P = 10−4

controls; P = 10−3 cases) (11).
SNP (Rs780094) is in a large block of LD,

spanning 416 kb and 16 genes. The SNP re-
sides, however, within a highly plausible biolog-
ical candidate gene: glucokinase regulatory protein
(GCKR). GCKR regulates glucokinase (GCK),
the first glycolytic enzyme. Adenoviral-mediated
overexpression of GCKR in mouse liver increased
GCK activity and lowered fasting blood glu-

Fig. 2. Regional plots
of six confirmed associa-
tions. For each of the (A)
CDKN2A/CDKN2B, (B)
IGF2BP2, (C) CDKAL1,
(D) TCF7L2, (E) HHEX
regions associated with
T2D, and (F) GCKR region
associated with triglyc-
eride levels, all genotyped
SNPs in the DGI genome
scan are plotted with their
P-values (as –log10 val-
ues) as a function of ge-
nomic position (with NCBI
Build 35). In each panel,
the SNP with the most
significant association in
theDGI combined analysis
is listed (blue diamond)
and its initial P-value in
the genome scan (red
diamond). Estimated re-
combination rates (taken
fromHapMap) are plotted
to reflect the local LD
structure around the asso-
ciated SNPs and their
correlated proxies (red:
r2 ≥ 0.8; orange: 0.5 ≤
r2 < 0.8; gray: 0.2≤ r2 <
0.5; white: r2 < 0.2).
Gene annotations were
taken from the Univer-
sity of California–Santa
Cruz genome browser.
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cose (22); overexpression of GCK in liver led to
lowered blood glucose and increased triglyc-
eride levels (23, 24).

On the basis of these findings, we examined
measures of glucose homeostasis. In both our scan
and replication samples, the T allele of rs780094
trended toward association to lower glucose (P <
0.10, P < 0.02 respectively), less insulin resistance
(HOMA-IR P < 0.05 and P < 0.01), and lower
risk of T2D (P < 0.20, P < 0.03). The association
of higher triglycerides with lower blood glucose
reverses the correlation normally seen in humans,
but is consistent with overexpression studies of
GCKR and GCK in mouse models.

In summary, we carried out WGAS for T2D
and 18 clinical traits. With collaborators we pro-
vide compelling evidence for associations at three
previously unknown loci with risk of T2D, the first
replications of two additional T2D loci, and a pre-
viously unknown association to triglyceride levels.
Including long-recognized associations, our data
provide strong support for 15 common variants as
influencing T2D and lipid levels in European pop-
ulations. The annotations of the new T2D genes
suggest a primary role of the pancreatic beta cell,
but much additional work will be required to
develop and test this hypothesis.

Our results have general implications for
genome-wide association studies of common
diseases. The modest effect of each SNP dem-
onstrates that large sample sizes will be required
to discover and validate genetic risk factors for
common disease. Although the eight T2D var-
iants discussed in this report each conveys a
substantial population attributable risk (5 to 27%
at each locus), each contributes very modestly to
overall variance in diabetes risk (0.04 to 0.5%,
~2.3% combined across the eight SNPs). Thus,
many more variants remain to be found as risk
factors for T2D, and many questions remain
about the balance between common and rare
variants, SNPs and copy-number alterations,
main effects and epistasis. Additional associated

variants may be found in or near these loci, as
has been the case for other examples (25–31).

The most notable aspect of this and other such
studies may be the generation of new hypotheses.
Before this work, few would have argued that
these genes and noncoding genomic regions were
a high priority for T2D research. Now, on the basis
of their validated relationship to disease, it is evi-
dent that they should be explored and understood.
The ability to discover etiological factors that fall
outside previous biological hypotheses is a major
motivation for unbiased genome-wide approaches
and is well supported by these and other emerging
data from genome-wide association studies.
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Reveals Risk Loci for Type 2 Diabetes
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The molecular mechanisms involved in the development of type 2 diabetes are poorly
understood. Starting from genome-wide genotype data for 1924 diabetic cases and 2938
population controls generated by the Wellcome Trust Case Control Consortium, we set out to detect
replicated diabetes association signals through analysis of 3757 additional cases and 5346 controls
and by integration of our findings with equivalent data from other international consortia. We
detected diabetes susceptibility loci in and around the genes CDKAL1, CDKN2A/CDKN2B, and
IGF2BP2 and confirmed the recently described associations at HHEX/IDE and SLC30A8. Our findings
provide insight into the genetic architecture of type 2 diabetes, emphasizing the contribution of
multiple variants of modest effect. The regions identified underscore the importance of pathways
influencing pancreatic beta cell development and function in the etiology of type 2 diabetes.

The pathophysiological basis of type 2
diabetes (T2D) remains unclear despite
its growing global importance (1). Can-

didate gene and positional cloning efforts have
suggested many putative susceptibility variants,
but unequivocal replications are so far limited to
variants in just three genes: PPARG, KCNJ11,
and TCF7L2 (2–4).

Improved understanding of the correlation be-
tween genetic variants [linkage disequilibrium
(LD)], allied to advances in genotyping technology,
have enabled systematic searches for disease-
associated common variants on a genome-wide

scale. The Wellcome Trust Case Control Consorti-
um (WTCCC) recently completed such a genome-
wide association (GWA) scan in 1924 T2D cases
and 2938 population controls from the United
Kingdom, using the Affymetrix GeneChip Human
Mapping 500 k Array Set (5). The strongest
association signals genome-wide were observed
for single-nucleotide polymorphisms (SNPs) in
TCF7L2. [For example, for rs7901695, odds ratio
(OR) = 1.37, 95% confidence interval (CI) = 1.25–
1.49, and P = 6.7 × 10−13.] The other known T2D
susceptibility variants were detected with effect
sizes consistent with previous reports (2, 3).

Here, we describe how integration of data
from the WTCCC scan and our own replication
studies with similar information generated by the
Diabetes Genetics Initiative (DGI) (6) and the
Finland–United States Investigation of NIDDM
Genetics (FUSION) (7) has identified several
additional susceptibility variants for T2D.

In the WTCCC study, analysis of 490,032
autosomal SNPs in 16,179 samples yielded
459,448 SNPs that passed initial quality control
(5). We considered only the 393,453 autosomal
SNPs with minor allele frequency (MAF) ex-
ceeding 1% in both cases and controls and no
extreme departure from Hardy-Weinberg equi-
librium (P < 10−4 in cases or controls) (8). This
T2D-specific data set shows no evidence of sub-
stantial confounding from population substruc-
ture and genotyping biases (8).

To distinguish true associations from those
reflecting fluctuations under the null or residual
errors arising from aberrant allele calling, we first
submitted putative signals from the WTCCC study
to additional quality control, including cluster-
plot visualization and validation genotyping on
a second platform (8). Next, we attempted rep-
lication of selected signals in up to 3757 addi-
tional cases and 5346 controls (replication sets
RS1 to RS3). RS1 comprised 2022 cases and
2037 controls from the U.K. Type 2 Diabetes
Genetics Consortium collection (UKT2DGC)
(all from Tayside, Scotland). RS2 included 632
additional T2D cases and 1750 population con-
trols from the Exeter Family Study of Child
Health (EFSOCH). A subset of SNPs were typed
in RS3, comprising a further 1103 cases and
1559 controls from the UKT2DGC (table S1).

The first wave of validated SNPs sent for
replication was selected from the 30 SNPs, in
nine distinct chromosomal regions (excluding
TCF7L2), which had, in the WTCCC scan alone,
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