Exploring non linearities in Hedge Funds

An application of Particle Filters to Hedge Fund Replication

Guillaume Weisang¹ Thierry Roncalli²

¹Bentley University, Waltham, MA

²Lyxor AM

January 28-29, 2010

Overview of the Factor Approach

A hedge fund portfolio:

$$r_t^{\mathsf{HF}} = \sum_{i \in I} \omega_{it} r_{it}$$

Assumption

The structure of all asset returns can be summarized by a set of risk factors $\{F_j\}_{j=1,...,m}$:

$$\forall t \qquad r_{it} = \alpha_i + \sum_{j=1}^m \beta_{ij} F_{jt} + \xi_{it}$$

with

$$\mathbb{E}\left(\xi_{it}\left|F_{1t}\ldots F_{mt}\right.\right)=0$$

A typical factor model

One assumes

such that

$$r_{t}^{\mathsf{HF}} = \alpha_{t}^{\mathsf{HF}} + \sum_{j=1}^{m} w_{jt}^{\mathsf{HF}} F_{jt} + \varepsilon_{t}$$
$$\alpha_{t}^{\mathsf{HF}} = \sum_{i \in I} \alpha_{i} \omega_{it}$$
exposures $w_{jt}^{\mathsf{HF}} = \sum_{i \in I} \omega_{it} \beta_{ij}$
$$\varepsilon_{t} = \sum_{i \in I} \omega_{it} \xi_{it}$$

risk

Literature Review of the Factor Approach

Summary

- Static Linear factor models [Amenc et al., 2007]
 - Lack reactivity
 - Fail the test of robustness, giving poor out-of-sample results
- Factor selection [Fung and Hsieh, 1997] [Lo, 2008]
 - ► In static models, economic selection of factors → significant improvement over other methodologies for out-of-sample robustness test.
 - In dynamic models, [Darolles and Mero, 2007] uses a PCA-based factor evaluation methodology [Bai and Ng, 2006] on rolling OLS regressions.
 - * Improvement over "naive" inclusion of all relevant economic factors
 - * Poor Interpretability of the evaluated factors
- Dynamic linear models [Roncalli and Teiletche, 2008] [Lo, 2008] [Jaeger, 2009]: Capturing the *unobservable* dynamic allocation using traditional (OLS) methods is
 - Very difficult
 - Estimates can vary greatly at balancing dates

- (E) (E)

Hedge Fund Replication – The Nonlinear Non-Gaussian Case

Why It is Interesting

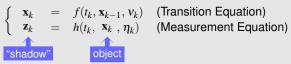
- HF Returns are not Gaussian
 - negative skewness and positive excess kurtosis.
- Nonlinearities in HF Returns
 - Nonlinearities documented from the very start of hedge-fund replication see, e.g., [Fung and Hsieh, 1997].
 - Nonlinearities
 - * are important for some strategies but not for the entire industry [Diez de los Rios and Garcia, 2008].
 - may be due to positions in derivative instruments or un-captured dynamic strategies see, e.g., [Merton, 1981].
 - No successful hedge fund replication using non-linear models has ever been done

Methodology

Tracking Problems

Definition (Tracking Problem)

The following two equations define a tracking problem (TP) [Arulampalam et al., 2002]:



where

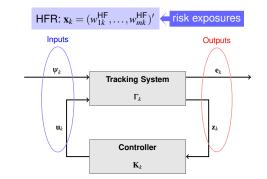
- ▶ $\mathbf{x}_k \in \mathbb{R}^{n_x}$ is the state vector, and $\mathbf{z}_k \in \mathbb{R}^{n_z}$ the measurement vector at step *k*.
- v_k et η_k are mutually independent i.i.d noise processes.
- The functions f and h can be non-linear functions.

Tracking Problems and Tactical Allocation

Tracking Systems

Discrete case, at time step k

- Outputs
 - ► Tracking Error $\mathbf{e}_k = \mathbf{z}_k - \hat{\mathbf{z}}_{k|k-1}$ $\mathbf{e}_k = r_k^{\mathsf{HF}} - r_k^{\mathsf{Clone}}$
 - Censored measurement z_k
 z_k = r_k^{HF}



- Inputs
 - Exogenous signals
 ψ_k = (x₀, η_{1:k}, ν_{1:k})
 HF changes in allocation, strategies or reporting
 - Controlled input u_k
 Assumption:

 $\mathbf{u}_k = K_k \, \mathbf{z}_k$

Adjustments to the replication portfolio's risk exposures

Methodology

Bayesian Filters

Optimal Control Theory

Under some general assumptions, one can prove

racking error
$$ightarrow \mathbf{e}_k \ = \mathbf{T}_{e \psi_k} \ \psi_k \leftarrow$$
 exogenous signals

with

transfer function
$$\Rightarrow$$
 $\mathbf{T}_{e\psi_k}$ = $\Gamma_{e\psi_k} + \Gamma_{eu_k} K_k (I - \Gamma_{zu_k})^{-1} \Gamma_{z\psi_k}$

The role of the controller K_k is to \checkmark

- stabilize the system
- make $T_{e\psi}$ small in an appropriate sense.

Definition (Stability)

A system is said to be marginally stable if the state x is bounded for all time t and for all bounded initial states \mathbf{X}_0 .

Bayesian Filters are algorithms which provide the optimal estimators of the state \mathbf{x}_{k}

Advantages of Bayesian Filters: no assumption of stationarity

Methodology

Bayesian Filters

Solving Tracking Problems At time step k

> Prediction equation for the prior density

$$p(\mathbf{x}_{k} | \mathbf{z}_{1:k-1}) = \int p(\mathbf{x}_{k} | \mathbf{x}_{k-1}) p(\mathbf{x}_{k-1} | \mathbf{z}_{1:k-1}) \, \mathrm{d}\mathbf{x}_{k-1}$$

Update equation for the posterior density

$$p(\mathbf{x}_k \mid \mathbf{z}_{1:k}) \propto p(\mathbf{z}_k \mid \mathbf{x}_k) p(\mathbf{x}_k \mid \mathbf{z}_{1:k-1})$$

Best estimates

$$\mathbf{\hat{x}}_{k|k-1} = \mathbb{E}[\mathbf{x}_k \mid \mathbf{z}_{1:k-1}] \qquad \mathbf{\hat{x}}_{k|k} = \mathbb{E}[\mathbf{x}_k \mid \mathbf{z}_{1:k}]$$

Implementation ►

- Kalman Filter (KF): linear Gaussian case
- H_∞ Filters or Particle Filters (PF): nonlinear or non Gaussian case

Particle Filters

- If the posterior density $p(\mathbf{x}_k | \mathbf{z}_{1:k}) \propto \pi(\mathbf{x}_k)$ such that $\pi(x)$ is easy to evaluate but difficult to draw sample from.
- Let $\{\mathbf{x}_k^i\}_{i=1}^{N_s}$ be samples from an importance density $q(\cdot)$
- The posterior density at time k can then be approximated as

$$p(\mathbf{x}_k \mid \mathbf{z}_{1:k}) \approx \sum_{i=1}^{N_s} w_k^i \delta\left(\mathbf{x}_k - \mathbf{x}_k^i\right)$$
(1)

where, using Bayes rule,

$$w_k^i \propto w_{k-1}^i \frac{p\left(\mathbf{z}_k \mid \mathbf{x}_k^i\right) \times p\left(\mathbf{x}_k^i \mid \mathbf{x}_{1:k-1}^i\right)}{q\left(\mathbf{x}_k^i \mid \mathbf{x}_{1:k-1}^i, \mathbf{z}_k\right)}$$

- ► The set of support points {x_kⁱ}_{i=1}^{N_s</sub> and their associated weights {w_kⁱ, i = 1,...,N_s} characterizes the *posterior density* at time step k}
- Equation (1) is at the core of Particle Filters (PF). Considering different assumptions leads to different numerical algorithms (SIS, GPF, SIR, RPF, etc.).

Hedge Fund Replication – Non-Gaussian Nonlinear Case

Objectives

Non-Gaussian or Nonlinear Case

Non Gaussian

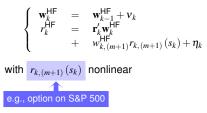
$$\begin{cases} \mathbf{w}_{k}^{\mathsf{HF}} &= \mathbf{w}_{k-1}^{\mathsf{HF}} + \boldsymbol{\nu}_{k} \\ r_{k}^{\mathsf{HF}} &= \mathbf{r}_{k}^{\prime} \mathbf{w}_{k}^{\mathsf{HF}} + \eta_{k} \\ \eta_{k} &\sim \mathscr{H} \end{cases}$$

with $\mathscr H$ non Gaussian

The objectives of this paper are to

- explore the nature of HF nonlinearities
 - 1. non Gaussian errors
 - 2. nonlinear factor
- explore possible remedy for Hedge Fund replication: PF

Nonlinear



The Gaussian Distribution Assumption

Framework

Consider

$$egin{aligned} r_k^{ ext{HF}} &= \mathbf{r}_k^ op eta_k + \eta_k \ eta_k &= eta_{k-1} + \mathbf{v}_k \ \eta_k &\sim \mathscr{H} \end{aligned}$$

with \mathscr{H} non Gaussian \longrightarrow May be solved using Particle Filters.

- Assume \mathscr{H} is a Skew *t* distribution $\mathscr{S}(\mu_{\eta}, \sigma_{\eta}, \alpha_{\eta}, v_{\eta})$
- 3 estimation methods
- (PF #1) ML on parameters of \mathscr{H} using the Kalman Filter (KF) tracking errors.
- (PF #2) GMM to estimate m + 3 parameters (classical MM + two moments for skewness and kurtosis).
- (PF #3) Same as (PF #2) except $\hat{\alpha}_{\eta}$ is forced to -10.

The Gaussian Distribution Assumption

Results with SIR algorithm and 50000 particles

	$\hat{\mu}_{1Y}$	$\hat{\sigma}_{1\mathrm{Y}}$	S	γ_1	γ2
HF	9.94	7.06	0.77	-0.57	2.76
LKF ¹	7.55	6.91	0.45	-0.02	2.25
PF #1	7.76	7.44	0.45	-0.03	2.02
PF #2	7.57	7.28	0.43	-0.11	1.93
PF #3	6.90	7.99	0.31	-0.57	2.88
	π_{AB}	$\sigma_{ m TE}$	ρ	τ	$ ho_S$
LKF	75.93	3.52	87.35	67.10	84.96
PF #1	78.09	4.03	84.71	63.49	81.94
PF #2	76.13	4.25	82.51	61.60	80.20
PF #3	69.43	5.11	77.62	54.75	73.55

Conclusion

With **linear assets**, higher kurtosis and negative skewness come at the cost of a higher tracking error σ_{TE} .

 \Rightarrow It is not the right way to get at nonlinearities.

G. Weisang, T. Roncalli (Bentley Univ., Lyxor AM) Explori

xploring non linearities in HF: Particle Filters

Taking into account Nonlinear Assets

Idea Build Option Factors

$$\left\{ \begin{array}{lll} \mathbf{w}_{k}^{\mathsf{HF}} &=& \mathbf{w}_{k-1}^{\mathsf{HF}} + \boldsymbol{\nu}_{k} \\ r_{k}^{\mathsf{HF}} &=& \mathbf{r}_{k}^{\prime} \mathbf{w}_{k}^{\mathsf{HF}} \\ &+& w_{k-1,(m+1)}^{\mathsf{HF}} r_{k,(m+1)} \left(s_{k} \right) + \eta_{k} \end{array} \right.$$

where

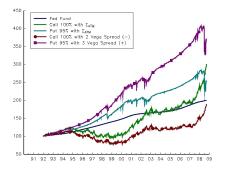
- r_{k,(m+1)} (s_k) nonlinear, (e.g., the return of a systematic one-month option selling strategy on S&P 500)
- s_k is the strike of the option at time index k.

Problem

Results are data dependent: liquidity, bid/ask spread, size amount (e.g., backtest with VIX).

Example

Systematic selling at end of month 1M put (resp. call) options with $s_k = 95\%$ (respectively 100%).



Conclusion Dependent on

- Rebalancing dates (e.g., end of month certainly a most favorable time for selling put options).
- Implied volatility data and on skew's and bid/ask spread's assumptions.

Estimation procedure

- Two ways to estimate these strikes
 - (a) Estimate the option strikes separately from the tracking problem: endogenous to the estimation but exogenous to the filter (which can then use KF).
 - (b) The option strike belongs to the state vector of a nonlinear TP system

$$\begin{pmatrix} \begin{pmatrix} \mathbf{w}_k \\ s_k \end{pmatrix} = \begin{pmatrix} \mathbf{w}_{k-1} \\ s_{k-1} \end{pmatrix} + \begin{pmatrix} \nu_k \\ \varepsilon_k \end{pmatrix} \\ r_k^{(\mathrm{HF})} = \sum_{i=1}^m w_k^{(i)} r_k^{(i)} + w_k^{(m+1)} r_k^{(m+1)} (s_k) + \eta_k$$

$$(2)$$

• **PF** • $\eta_k \sim \mathcal{N}(0, \sigma_\eta^2)$ and

$$\left(\begin{array}{c} \mathbf{v}_k\\ \mathbf{\varepsilon}_k \end{array}\right) \sim \mathcal{N}\left(\left(\begin{array}{c} \mathbf{0}\\ \mathbf{0} \end{array}\right), \left(\begin{array}{c} Q & \mathbf{0}\\ \mathbf{0} & \mathbf{\sigma}_s^2 \end{array}\right)\right)$$

with $Q = \operatorname{diag}(\sigma_1^2, \ldots, \sigma_m, \sigma_{m+1}^2)$. The vector of unkown parameters to estimate is then $\theta = \{\sigma_1, \dots, \sigma_m, \sigma_{m+1}, \sigma_s, \sigma_m\}$

Estimation procedure (Cont'd)

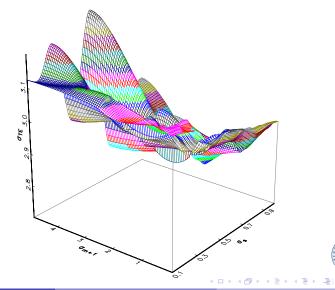
- Direct estimation of system (2)'s parameters by PF and (relative) scarcity of data on HF returns is very difficult
 - \implies use of yet another estimation method
- Step 1 σ_{η} and σ_i for i = 1, ..., m: ML considering the linear factor model
- Step 2 σ_{m+1} and σ_s : grid-based method *conditionally on the previous estimates.* If *f* denotes the statistic of interest in the maximization (or minimization) of and if Ω denotes the set of grid points:

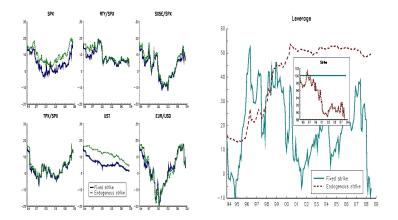
 $\{\hat{\sigma}_{m+1}, \hat{\sigma}_s\} = \arg \max f(\sigma_{m+1}, \sigma_s \mid \hat{\sigma}_1, \dots, \hat{\sigma}_m, \hat{\sigma}_\eta) \quad \text{u.c.} \ (\sigma_{m+1}, \sigma_s) \in \Omega.$

Results are biased yet consistent w.r.t. linear model

(D) (A) (A) (A)

Example: Grid approach applied to the HFRI RV index





(a) Exposures of the linear assets for the (b) Option exposures and strikes for the HFRI RV index

HFR – Non-Gaussian Nonlinear Case

Key points and Future Developments

Gaussian assumption KF's tracking errors have skew and excess kurtosis. A remedy: Skew *t* distribution

- 1. very difficult direct estimation of parameters in PF
- 2. no luck with two-step procedure (KF + GMM) $\implies \searrow$ Skew, \nearrow TE

Nonlinear Factor Endogenous and exogenous

- 1. Exogenous factors are extremely data dependent
- 2. Endogenous factors: some success using a grid-based approach and KF; PF code has to be parallelized
- 3. For now, purely academic exercise

Robust Methodology 1. To BE DEVELOPED

2. H_{∞} Filters minimize worst cases \longrightarrow robust to violations of Gaussian and linearity assumptions

Selected References I

Thierry Roncalli and Guillaume Weisang

Tracking Problems, Hedge Fund Replication and Alternative Beta. *Working Paper*, available on SSRN, 2009.

Andrew Lo

Hedge Funds: An Analytic Perspective. Princeton University Press, 2008.

N. Amenc, W. Géhin, L. Martellini, and J-C. Meyfredi. The Myths and Limits of Passive Hedge Fund Replication. *Working Paper*, June 2007.

N. Amenc, L. Martellini, J-C. Meyfredi and V. Ziemann. Passive Hedge Fund Replication – Beyong the Linear Case. Working Paper, January 2008.

S. Darolles and G. Mero. Hedge Fund Replication and Factor Models. *Working Paper*, 2007.

Selected References II

J. Bai and S. Ng.

Evaluating Latent and Observed Factors in Macroeconomics and Finance. *Journal of Econometrics*, 131(1-2):507-537, 2006.

A. Diez de los Rios and R. Garcia.

Assessing and Valuing the Non-Linear Structure of Hedge Fund Returns. *Working Paper*, 2008.

W. Fung and D. A. Hsieh.

Empirical Characteristics of Dynamic Trading Strategies: the Case of Hedge Funds.

Review of Financial Studies, 10:275-302, 1997.

T. Roncalli and J. Teiletche.

An Alternative Approach to Alternative Beta.

Journal of Financial Transformation, 24:43-52, 2008. Available at SSRN: http://ssrn.com/abstract=1035521.

Selected References III

R. C. Merton.

On Market Timing and Investment Performance. I. An Equilibrium Theory of Value for Market Forecasts.

Journal of Business, 54(3):363-406, 1981.

S. Arulampalam, S. Maskell, N.J. Gordon and T. Clapp. A Tutorial on Particle Filters for Online nonlinear/non-Gaussian Bayesian Tracking.

IEEE Transaction on Signal Processing, 50(2):174-188, Februrary 2002.

Lars Jaeger.

Alternative Beta Strategies and Hedge Fund Replication. John Wiley & Sons, NY, 1st edition, 2008.

Statistics Description

- $\hat{\mu}_{1Y}$ is the annualized performance;
- π_{AB} the proportion of the HFRI index performance explained by the clone;
- σ_{TE} is the yearly tracking error;
- ρ, τ and ρ_S are respectively the linear correlation, the Kendall tau and the Spearman rho between the monthly returns of the clone and the HFRI index;
- s is the sharpe ratio;
- γ₁ is the skewness;
- γ₂ is the excess kurtosis.

