AACD models – Summary

Notations

- $x_i = t_i t_{i-1}$ where t_i : arrival time of event *i*. x_i is called the duration.
- I_i denotes all information available at time t_i

Model

- $x_i = g(\psi_i)\varepsilon_i$ where ε_i is the standardized duration. $\{\varepsilon_i\}$ are identically distributed with pdf f such that f has a strictly positive support and $E\varepsilon_i = 1$.
- $\psi_i = E(x_i | I_{i-1})$ is the conditional duration. One assumption of the model is that ψ_i and ε_i are independent.
- The evolution equation of ψ_i is given by

$$f_{\lambda}(\psi_{i}) = \frac{\psi_{i}^{\lambda} - 1}{\lambda} = \omega_{*} + \sum_{l=1}^{r} \alpha_{l}^{*} \psi_{i-l}^{\lambda} \operatorname{Shock}(\varepsilon_{i-l}) + \sum_{k=1}^{q} \beta_{k} \left(\frac{\psi_{i-k}^{\lambda} - 1}{\lambda} \right),$$

i.e.

$$\psi_i^{\lambda} = \omega + \sum_{l=1}^r \alpha_l \psi_{i-l}^{\lambda} \text{Shock}(\varepsilon_{i-l}) + \sum_{k=1}^q \beta_k \psi_{i-k}^{\lambda}$$

where Shock(ε) = $[|\varepsilon - b| - c(\varepsilon - b)]^{\nu}$, and $\omega = \lambda \omega_* - \sum_{k=1}^{q} \beta_k + 1$ and for l = 1..r, $\alpha_l = \lambda \alpha_l^*$. *b* is called the shift parameter and *c* is the rotation parameter. ν is a shape parameter that controls the convexity of the shock impact curve. λ is the Box-Cox parameter. It defines the Box-Cox transformation done on the conditional duration.

• $g(\psi_i)$ depends only on the distribution of ε_i , i.e. on f

$$f \equiv \text{Exponential}(1): \ g(\psi_i) = \psi_i$$

• $f \equiv \text{Weibull}(1,\gamma): g(\psi_i) = \psi_i \cdot \frac{1}{\Gamma(1+\frac{1}{\gamma})}$

•
$$f \equiv \text{Generalized Gamma}(1, \gamma, \kappa): g(\psi_i) = \psi_i \cdot \frac{\Gamma(\kappa)}{\Gamma(\kappa + \frac{1}{\gamma})}$$

•
$$f \equiv \text{Burr}(\mu, \kappa, \sigma^2)$$
 under the constraint $\mu = 1$: $g(\psi_i) = \psi_i \cdot \frac{(\sigma^2)^{1+\frac{1}{\kappa}} \Gamma(\frac{1}{\sigma^2}+1)}{\Gamma(1+\frac{1}{\kappa}) \cdot \Gamma(\frac{1}{\sigma^2}-\frac{1}{\kappa})}$