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[1] Eddy covariance data (FLUXNET) provide key insights into how carbon and
water fluxes covary with climate and ecosystem states. Here we merge FLUXNET
data with reanalyzed evaporative fraction and dynamic land cover to create monthly
global carbon flux anomalies attributable to hydrologic change from 1948 to 2009.
Changes in land cover had a relative influence of <1% with an absolute effect less than
uncertainty. The lack of trend globally in Net Ecosystem Productivity (NEP) attributable
to hydroclimatic change masked positive trends in North America and Australia and
negative trends in Africa and Asia. This spatial pattern coincided with geographic variation
in hydroclimate excluding the temperature‐limited high latitudes. Global NEP anomalies
due to hydroclimatic variability ranged from −2.1 to +2.3 Pg C yr−1 relative to a
global average sink of +2.8 Pg C yr−1. Trends in hydroclimate‐induced NEP anomalies
exceeded the background mean sink in many regions.
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1. Introduction

[2] The cycling of water in the Earth system is directly linked
to global environmental change. The Clausius‐Clapyeron
equation posits a 7% change in specific humidity per 1°C of
warming [Huntington, 2006] leading directly to an acceleration
of the hydrological cycle. Evidence fromobservations [Folland
et al., 2001; Allan and Soden, 2008, Robock et al., 2000] and
climate models [Allen and Ingram, 2002; John et al., 2009;
Trenberth et al. 2003] also implicate the large‐scale warming
associated with greenhouse gas emissions as a driver of
hydrologic change. This enhanced throughput alters the fre-
quency, amount, and intensity of precipitation [Trenberth et al.,
2003] with downstream effects including an increased inci-
dence of extreme dryness [Dai et al., 2004], broad‐scale
increases in soil moisture [Robock et al., 2000], a regime shift in
global evapotranspiration [Jung et al., 2010], and relatively wet
areas becoming wetter while drier regions become drier [John
et al., 2009].
[3] Diagnosing changes in hydrologic fields and their

effects on the Earth system is confounded by an uneven
spatiotemporal coverage of high‐quality hydrologic data
[Huntington, 2006], shrinking observational networks [Bates
et al., 2008], and relatively short time series [e.g., Wentz
et al., 2007]. Natural variability [Ziegler et al., 2003], inter-
actions with atmospheric circulation patterns [Arnell and Liu,
2001], global dimming and brightening [Wild et al., 2008],
and regionally contrasting changes in precipitation [Zhang

et al., 2007] also act to complicate relationships between
hydroclimate and terrestrial carbon sink strength.
[4] Understanding the interplay between hydrologic change

and carbon cycling is a frontier challenge in the context of
global environmental change. Because of the tight coupling of
water and carbon cycling, changes in hydrologic variables
influence terrestrial carbon sink strength [Nemani et al., 2002;
Schwalm et al., 2010; Zhao and Running, 2010]. Here we
present a bottom‐up approach that extends observed footprint‐
scale relationships between carbon cycling and hydrologic
change to global monthly maps of carbon flux anomalies from
1948 to 2009. We merge data from a global network of eddy
covariance flux towers [Baldocchi, 2008], reanalyzed climate
data [Kalnay et al., 1996], and time‐varying land cover [Chini
et al., 2009] to derive global, observationally based estimates
of carbon flux attributable to hydrologic change. We address
the following questions: How large are carbon sources/sinks
resulting from long‐term trends in hydroclimate? Which
regions of the globe exhibit the largest trends? Where is the
uncertainty the largest?

2. Data and Methods

2.1. Deriving Carbon Flux Anomalies

[5] We quantified the effect of hydroclimatic variability
on global Net Ecosystem Productivity (NEP) using site‐
specific sensitivities observed at FLUXNET eddy covari-
ance sites [Baldocchi, 2008], a global monitoring network
of in situ CO2 exchange between land and atmosphere. As
described in detail by Schwalm et al. [2010], the sensitivities
were calculated using empirical relationships between NEP
and evaporative fraction (EF; calculated as the ratio of total
latent heat to available energy). Prior to estimation both
fields were aggregated to monthly values across all half‐
hours, day and nighttime, in a given month where greater
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than 90% of the half‐hourly values were direct measure-
ments or gap‐filled with high confidence. These monthly
values were deseasonalized and transformed into relative
anomalies or z‐scores, i.e., normalized to have mean zero
and unit standard deviation (s) by site and climatic season.
We defined climatic season by calendar month and hemi-
sphere, e.g., climatic winter was December, January, and
February in the Northern Hemisphere and June, July, and
August in the Southern Hemisphere.
[6] We then grouped the normalized data by International

Geosphere‐Biosphere Programme (IGBP [Loveland et al.,
2000]) land cover class and climatic season. Using all
months within each group we regressed normalized NEP
on normalized EF. The linearity of these relationships was
confirmed using the Akaike information criterion. The
sensitivity, i.e., the slope of the regression line, was then
transformed to units g C m−2 mon−1 s−1 using the biome‐
specific pooled standard deviation of NEP. Uncertainties
for each sensitivity (see section 2.2) were calculated by
combining, in quadrature, slope uncertainty from standard
regression techniques and bootstrapped uncertainty of the
biome‐specific pooled standard deviation. Overall the sen-
sitivities were derived using 5173 site‐months from 1991 to
2006 collected at 238 sites distributed globally on an
irregular grid with the highest geographical concentration in
Europe and North America [Schwalm et al., 2010].
[7] We used these FLUXNET‐derived NEP sensitivities

to generate time‐ and space‐varying global fields of monthly
NEP flux anomalies attributable to hydrologic change from
1948 to 2009 (hereafter dNEP). For scaling in space we first
generated annual time series of the IGBP land cover scheme
for each terrestrial pixel using (1) data from the Land Use
Harmonization project (LUH [Chini et al., 2009]), a har-
monized set of six land cover classes for the Fifth Assess-
ment Report of the Intergovernmental Panel on Climate
Change, and (2) dynamic plant functional type (16 classes)
output from the Community Land Model (CLM [Lawrence
and Chase, 2010]). In both cases, we translated base land
cover to the IGBP template. Sensitivities for each terrestrial
grid cell were the weighted average of all sensitivities
with weights equal to the fractional coverage of each land
cover class.
[8] Dynamic climate was incorporated by linking the

spatially scaled sensitivities to time‐varying reanalyzed EF.
To reconstruct dNEP over the longest time span possible we
used National Centers for Environmental Prediction/National
Center for Atmospheric Research (NCEP/NCAR) Reanalysis
data [Kalnay et al., 1996] from 1948 to 2009. As with the
FLUXNET‐derived NEP sensitivities, EF was calculated as
the ratio of latent heat to available energy. Combining the
time‐varying maps of spatially scaled sensitivities and rea-
nalyzed EF allowed for dNEP to be calculated for any point
in time and space:

�NEP ¼ zEF
X18
i¼1

wiDi

" #
; ð1Þ

where, for a given pixel and month, dNEP (g C m−2 month−1)
is the anomaly in NEP attributable to hydrologic change, zEF
is the relative anomaly of monthly EF, wi is the fractional

coverage of the 18 IGBP land cover classes, and Di is the
NEP sensitivity (g C m−2 mon−1 s−1) for each IGBP land
cover class.
[9] In addition to dNEP, we also calculated dGPP and dR,

the effects of hydrologic change on gross primary produc-
tivity (GPP) and R (ecosystem respiration), and their
uncertainties, respectively. GPP and R were estimated using
FLUXNET flux partitioning algorithms [Reichstein et al.,
2005] and sensitivities derived following Schwalm et al.
[2010]. Because our approach generated anomalies attrib-
utable to hydrologic change, we used gridded NEP from
CarbonTracker [Peters et al., 2007] to estimate mean NEP
and related this to dNEP. We also used independent monthly
hydrologic fields to characterize broad‐scale changes in
the global water cycle: UDel precipitation from 1948 to
2008 [Legates and Willmott, 1990], CRU TS 3.0 precipi-
tation from 1948 to 2006 [Mitchell and Jones, 2005], UDel
soil moisture (midmonthly mm assuming a soil column
of 150 cm depth) from 1948 to 2008 [Willmott et al., 1985],
and Palmer Drought Severity Index (PDSI) from 1948 to
2005 [Dai et al., 2004]. Prior to analysis, all data products
were regridded to a 1° latitude/longitude resolution. To be
consistent with our calculated flux anomalies, we removed
each grid cell’s mean monthly cycle across the full record,
except for PDSI, which was already in anomaly form.
[10] To separate the effects of land cover and climate, we

performed three upscaling scenarios: DLDC, the baseline,
used both dynamic land cover and dynamic climate. CLDC
used constant land cover and dynamic climate. DLCC used
dynamic land cover and constant climate. For constant cli-
mate, the middle year of the time record (1979) was repeated
for the 62‐year record. Constant land cover used the base-
line IGBP land cover map [Loveland et al., 2000]. We
quantified absolute effects through differencing (effect of
land cover = DLDC − CLDC; effect of climate = DLDC −
DLCC) and relative influence using variance decomposition
[Schaefer et al., 2002].

2.2. Uncertainty Analysis

[11] Our uncertainty analysis included both uncertainty
in the dNEP time series and methodological uncertainty. The
latter was based on trend uncertainty in EF as well as rep-
resentation error of both the underlying sensitivities and the
FLUXNET network. We also calculated the overall relative
confidence of our bottom‐up approach by combining all
methodological uncertainties.
[12] Uncertainty, one standard deviation about the mean

(1s), for the dNEP time series was estimated by combining
uncertainty in land cover, NEP sensitivity, and reanalyzed
EF. We calculated EF uncertainty using multiple overlapping
retrospective analyses from the Multimodel Analysis for the
Coordinated Enhanced Observing Period (CEOP [Bosilovich
et al., 2009]) data set, an ensemble of 10 global reanalysis
monthly products from October 2002 to December 2004
that included the NCEP/NCAR Reanalysis. EF uncertainty
was estimated as 1s across all ensemble members for each
terrestrial pixel. We averaged these values to a mean cycle of
uncertainty for the full analysis period. For the FLUXNET‐
based sensitivities we used the uncertainty associated with
observed linear relationships between NEP and EF from stan-
dard regression techniques combined with the bootstrapped
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standard deviation of NEP [Schwalm et al., 2010]. These
sources of uncertainty were combined for each grid cell
by the use of Monte Carlo methods, and also across grid
cells in quadrature to global yearly values. For land cover
we estimated global yearly values of dNEP using translated
IGBP classes from LUH, the baseline, and CLM with time‐
varying reanalyzed EF. As a robust estimate of uncer-
tainty, we calculated their mean absolute deviation for the
62‐year period and scaled this by 1.4826 [Jung et al., 2009]
to obtain 1s.
[13] To quantify the uncertainty of long‐term EF dynam-

ics, we calculated the coefficient of variation in EF trend
using four reanalysis products. For the global changes in EF
from 1948 to 2009, we effectively assumed that the NCEP/
NCAR reanalysis was an unbiased forcing data set, even
while recognizing limitations noted by others concerning, e.
g., downwelling shortwave [Sheffield et al., 2006], relative
humidity [Dessler and Davis, 2010], and soil moisture [Lu
et al., 2005]. In addition to NCEP/NCAR, we estimated
trends in EF from 1979 to 2008 using the NCEP/Department
of Energy (DOE) [Kanamitsu et al., 2002], MERRA
[Bosilovich et al., 2008], and National Oceanic and Atmo-
spheric Administration‐Cooperative Institute for Research
in Environmental Sciences (NOAA‐CIRES) [Compo et al.,
2011] reanalyses. The time window was determined by the
longest span covered by all four products. We calculated a
map of the coefficient of variation in EF trend (CV) as the
mean trend divided by its standard deviation using all four
reanalyses at each pixel. While this ignored potential effects
of switching from the nonsatellite to the satellite era [e.g.,
Dessler and Davis, 2010], it offered a 30‐year window to
evaluate the robustness of the NCEP/NCAR EF trends.
[14] Representation error involved two distinct character-

izations of uncertainty that were subsequently combined
with uncertainty in EF trend to assess relative confidence.
The first characterization addressed statistical reliability of
NEP sensitivity to EF. For this we generated a signal‐to‐
noise ratio (SNR) map where each grid cell was populated
by the ratio of its gridded sensitivity (cf. equation 1) normalized
by its uncertainty. SNR values in excess of two represented
sensitivities distinct from zero with at least 95% confidence.
The second characterization of uncertainty addressed the net-
work representativeness of FLUXNET. We tabulated the
number of sites used for sensitivity derivation in all intersec-
tions of climate type (Köppen‐Geiger group and type classes
[Peel et al., 2007]) andbiome (IGBP land cover class [Loveland
et al., 2000]). We then mapped this globally based on each
pixel’s climate by biome setting to obtain amap quantifying the
network’s degree of representation.
[15] Last, we created a map of relative confidence for the

upscaled fluxes by combining the uncertainty in EF trend,
the signal‐to‐noise ratio of NEP sensitivity, and FLUXNET
representativeness. This allowed for a nonparametric rank-
ing of the degree of extrapolation and overall robustness
[cf. Jung et al., 2009] of the hydroclimatically driven NEP
trends derived in this work. Prior to combination all three
maps were transformed to ranks and then binned by decile.
The three binned maps were then combined additively and
mapped to four ordinal classes of relative confidence: A
value of 0 indicated the lowest relative confidence (more
uncertainty/less representativeness). A value of 3 indicated

the highest relative confidence (less uncertainty/more rep-
resentativeness).

3. Results and Discussion

[16] The global time series did not exhibit a long‐term
trend in dNEP, dGPP, or dR (Figure 1). During the 62‐year
record, the global annual dNEP showed considerable vari-
ability, ranging from −2.1 to +2.3 Pg C yr−1 relative to an
average 2000 to 2006 sink of +2.8 Pg C yr−1 [Canadell
et al., 2007]. dGPP was typically greater than dR, mimick-
ing patterns observed on footprint to biome scales [Schwalm
et al., 2010]. The gross fluxes, dGPP and dR, were largely in
phase and ∼50% larger than dNEP, i.e., their degree of
compensation resulted in a more conservative dNEP trajec-
tory. Total uncertainty was an order of magnitude less than
the observed range over the 62‐year record and was driven
by uncertainty in land cover. Uncertainty in dGPP was
greatest, followed by dR and dNEP (0.69, 0.49, and 0.36, Pg
C yr−1, respectively). Despite the large uncertainty associ-
ated with land cover, time series of all carbon fluxes based on
LUH and CLM were highly correlated (r ≥ 0.92; p < 10−6),
such that hereafter we only consider LUH.
[17] Continental scale trends were statistically significant

and canceled each other, resulting in a zero global trend
(Table 1). North America showed a large positive trend,
while Asia and Africa show negative trends. Like the global
time series, continental trends in dGPP were greater than
trends in dR. Note that the trends in dGPP and dR were sig-
nificant for North America, while the trend in dNEP was not
and the opposite was true for Asia.
[18] Temporal variability at all spatial scales was driven

by hydrologic change as opposed to changes in land cover.
The mean absolute deviation between DLDC and CLDC
scenarios, the effect of land cover, was 0.029 Pg C yr−1

globally; two orders of magnitude less than the observed
range in dNEP and less than uncertainty. DLDC and CLDC
were also highly correlated (r = 0.998; p < 10−6). Further-
more, relative influence was 99.8% for climate and 0.2% for
land cover. This dominance of climate was present (>99.5%
relative influence) across all continents and all carbon fluxes.
[19] Despite the dominance of climate there was a sig-

nificant linear trend (= −0.001 Pg C yr−1; p < 10−6) in dNEP
associated with land cover; indicating the changes in global
land cover from 1948 to 2009 were conducive to decreased
uptake of CO2 conditioned on hydrologic change. This
trend’s effect and the effect of land cover in general were
negligible in magnitude. However, transient effects, e.g.,
flushes of respiration due to land clearing [Amiro et al., 2010],
were not estimated, since we assumed that steady state as one
land cover type was replaced by another. Such transient effects
influence the background mean NEP, whereas our results
indicated that changes in carbon flux attributable to hydrologic
change were driven by climate.
[20] Geographic variation in TNEP, the trend in dNEP over

the 62‐year period, yielded well‐defined regions of enhanced
uptake and outgassing of CO2 (Figure 2a). Prominent zones
of enhanced CO2 uptake were located in the conterminous
United States, south central Canada, southern Brazil, and
southern Africa. Enhanced outgassing dominated the Sahel
region of Africa, Europe, and large parts of China. The
largest region lacking any significant long‐term trend was
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the northern high latitudes. However, temperature dominates
interannual variability in NEP in this region [Nemani et al.,
2003; Schaefer et al., 2002; Yi et al., 2010], and no sig-
nificant influence of changing hydroclimate on carbon flux
was expected.
[21] TNEP was large compared with long‐term NEP aver-

ages from CarbonTracker [Peters et al., 2007] (Figure 2b).
Roughly 25% by area of the vegetated terrestrial biosphere
had a magnitude of TNEP greater than background mean NEP.
This included significant areas (Figure 2c) where TNEP acted
to switch a source to a sink (∼4%) or sink to a source (20%),
in agreement with the secular trend of increased dryness
[Dai et al., 2004] and downstream effects on CO2 uptake
[Schwalm et al., 2010]. CarbonTracker only covers 2001 to
2008 and is likely biased high relative to the true 1948–2008
mean NEP. Global NEP from 1949 to 2008 has shown an

upward trend [Le Quéré et al., 2009], indicating that the effects
of long‐term change in hydroclimate on NEP were likely
greater than we estimate.
[22] Trends in dNEP were strong enough to change many

regions from a sink to a source (Figure 2c). The tropics,
eastern China, and Europe exhibited spatially coherent tran-
sitions from a sink to a source. Over vast tracts of theWestern
Hemisphere, hydroclimatic variability acted to increase CO2

uptake; including regions with sources becoming smaller in
magnitude. These features were not linked to land cover
class, change in land cover, or background NEP (∣r∣ < 0.05;
p > 0.15), but rather to the underlying trends in hydrologic
fields (Figure 3).
[23] To understand the spatial clustering in TNEP we first

focus on North America and Europe. This emphasis is based
on the high density of FLUXNET sites in both regions
[Baldocchi, 2008] to maximize the robustness of the bottom‐
up approach applied here. In general, the trend in EF and hence
dNEP matched the sign of long‐term changes in hydrologic
variables such as precipitation and PDSI (Figure 3). Whereas
Europe became drier (negative trends in soil moisture and
PDSI), the conterminousUnited States becamewetter (positive
trends in precipitation, soil moisture, and PDSI). A modeling
exercise has similarly indicated that enhanced wetness has
modulated the strength of the midlatitude terrestrial sink across
North America [Nemani et al., 2002].
[24] Outside North America and Europe, other regions

exhibited inverse trends. For example, in the Ural and Volga
regions of Russia and Kazakhstan (Figure 3), this was linked
to seasonality and dominant vegetation type. Grasslands, the
dominant land cover class in this region, exhibited a clear

Table 1. Trend in Carbon Flux Attributable to Hydrologic Change
from 1948 to 2009a

Region

Trend (Pg C yr−1)

dNEP dGPP dR

Global −0.005 −0.001 0.004
North America 0.011 0.025 0.013
South America 0.003 0.015 0.012
Europe −0.005 −0.008 −0.002
Asia −0.008 −0.011 −0.003
Africa −0.008 −0.029 −0.022
Australiab 0.003 0.014 0.011

aBold values significant at a = 0.05.
bAustralia includes tropical Southeast Asia.

Figure 2. Long‐term trend and mean NEP. (a) 62‐year
trend (TNEP) in NEP attributable to hydrologic change.
(b) CarbonTracker mean NEP from 2001 to 2008. (c) Regions
where TNEP induced a change from a source to sink (blue), a
sink to source (red), an increase sink in CO2 uptake (green), or
a decrease source in CO2 uptake (yellow). Nonvegetated grid
cells and those without significant trend or change shown
in white.

Figure 1. Time series of carbon flux attributable to hydro-
logic change from 1948 to 2009. Flux is either (a) dNEP,
(b) dR, or (c) dGPP. Dashed line shows zero reference line.
Trends lines are not significant (p > 0.44) and are visually
indistinguishable from the zero reference line. Gray enve-
lope is 95% interval (±2s) that combines uncertainties in
EF, sensitivity, and land cover in quadrature. Note change
in y‐axis scale.
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seasonality in response to changes in hydroclimate [Schwalm
et al., 2010] with zero sensitivity in climatic fall or winter.
These inverse trends (declining EF but increasing dNEP)
indicated that changes in the water cycle were skewed toward
climatic seasons with zero sensitivity, i.e., negative EF trends
during climatic fall and winter were larger than positive ones
in climatic spring and summer.
[25] For the tropics of South America and Africa, the

dominant land cover class is evergreen broadleaf forest.
During the dry season, decreased wetness was found coinci-
dent with an increase in CO2 uptake in this forested type
[Saleska et al., 2007; Schwalm et al., 2010]. Because the
tropics are radiation‐limited [Teuling et al., 2009], this base-
line sensitivity followed from the link between drier condi-
tions and a decrease in cloudiness with an increase in
downwelling radiation and concomitant increase in carbon
uptake [Bonal et al., 2008; Saleska et al., 2007]. Globally,
the spatial patterning of agreement between TNEP (Figure 2a)
and trend in EF (Figure 3a) across the 62‐year hindcast period

was modulated by intraannual variability in both trends rela-
tive to the baseline sensitivities.
[26] While, for most regions, trends between dNEP (Figure 2a)

and EF (Figure 3a), as well as across independent char-
acterizations of the global water cycle, were in agreement,
some regions exhibited discrepancies, e.g., the Congo Basin
of Africa. This was related to sparse sampling networks in
several regions [Bates et al., 2008; Huntington, 2006] and
what each metric represents. The global water cycle metrics
reference demand and supply in varying degrees. EF and
PDSI take both demand and supply of plant available
water into account, whereas soil moisture and precipitation
focus solely on supply. PDSI also includes explicit temper-
ature dependence.
[27] A further caveat concerns the uncertainty in the

independent characterizations of the global water cycle
(Figure 3). For precipitation, a key boundary condition for

Figure 3. Trends in hydroclimatic fields. (a) Evaporative
fraction (EF) anomaly from NCEP/NCAR Reanalysis
[Kalnay et al., 1996] from 1948 to 2009. (b) Palmer
Drought Severity Index (PDSI) [Dai et al., 2004] from 1948 to
2005. (c) UDel soil moisture anomaly (v1.03) [Willmott et al.,
1985] from 1948 to 2008. (d) UDel precipitation anomaly
(v2.1) [Legates and Willmott, 1990] from 1948 to 2008. Panel
E: CRU precipitation anomaly (TS 3.0) [Mitchell and Jones,
2005] from 1948 to 2006. Only significant (p ≤ 0.05) values
shown; based on linear trends derived using deseasonalized
monthly values scaled to 1 year. Nonvegetated grid cells
shown in white. Red values indicate increasing dryness.

Figure 4. Uncertainty in EF trend, NEP sensitivities, and
representativeness of FLUXNET. (a) Coefficient of variation
(CV) for trend in EF. Map shows ratio of standard deviation
in EF trend over mean EF trend across four reanalysis pro-
ducts: NCEP/NCAR [Kalnay et al., 1996], NCEP/DOE
[Kanamitsu et al., 2002], MERRA [Bosilovich et al., 2008],
and NOAA‐CIRES [Compo et al., 2011]. Time coverage
is period of longest overlap from 1979 to 2008. CV values of
0 (gray) occur only when a single reanalysis has a significant
trend in EF. Areas without significant trend (p > 0.05) across
all four reanalysis products shown in white. (b) Signal‐to‐
noise ratio (SNR) of gridded NEP sensitivity. Map shows
NEP sensitivity (signal) normalized by its uncertainty (1s,
noise). Values of greater than 2 indicate nonzero sensitivities
with at least 95% confidence. (c) Intersection of Köppen‐
Geiger climate, group and type only [Peel et al., 2007], with
IGBP land cover class [Loveland et al., 2000]. Representa-
tiveness values are from a cross‐tabulation of FLUXNET sites
used in sensitivity derivation mapped using table lookup.
In Figures 4a–4c, nonvegetated areas shown in white.
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the hydrologic cycle, spatial means, spatial percentiles, and
trends globally exhibit high degrees of similarity across
observation‐based products [Fekete et al., 2004; Nickl et al.,
2010]. However, less similarity is seen in global averages
across reanalysis products [Bosilovich et al., 2008]. Fur-
thermore, the geography of precipitation may show pro-
nounced regional dissimilarities [Fekete et al., 2004; Yang
et al., 2005]. In this study the precipitation trends derived
using the UDel (Figure 3d) and CRU (Figure 3e) products
showed broad‐scale agreement, e.g., Africa and Australia
(Figure 3d and 3e), but also regional differences, e.g., the
upper Amazon basin. Despite these limitations, the overall
consistency and agreement between broad‐scale trends in
independent hydrologic variables and EF (Figure 3a) lend
confidence to our reported patterns of TNEP (Figure 2a).
[28] The coefficient of variation for the trend in EF (CV;

Figure 4a) showed that overall NCEP/NCAR EF was gen-
erally representative of trends in the global water cycle.
CV exhibited a large positive skew (mean = 9.52 and
maximum = ∼25,000) with a median value of 0.43. The
regions with the highest degree of uncertainty were the
tropics and the Indian subcontinent. In the Pampas region
of Argentina, the uncertainty in EF (Figure 4a) was cor-
roborated by the positive trends documented in four inde-
pendent realizations of the global water cycle, PDSI, soil
moisture, and two precipitation products (Figure 3), versus
the negative trend in NCEP/NCAR EF.
[29] Gridded sensitivities exhibited a pattern similar to

uncertainty in EF trend (Figure 4b). When expressed as a
SNR we found values above two across the full vegetated
biosphere, lending confidence to our overall approach. Areas
with smaller SNRs occurred in the tropics, the Sahel region of
Africa, and the temperature‐limited northern high latitudes.
For regions dominated by open shrublands, savannahs, and/
or wetlands, the signal‐to‐noise ratios were likely over-
estimated, because they were undersampled by FLUXNET.
Only 162, 54, and 110 site months, respectively, were
available for these three classes [Schwalm et al., 2010]. This
resulted in larger variability relative to sample size and NEP
sensitivities indistinguishable from zero at 95% confidence.
In open shrublands, for example, climatic summer sensiti-
vities for both gross fluxes were ∼30 g C m−2 mon−1.
However, these values effectively canceled and resulted in a
net NEP sensitivity of zero.
[30] Poor sampling of these cover types, especially open

shrublands, also appeared in our depiction of FLUXNET

representativeness (Figure 4c). Globally, the degree of rep-
resentativeness was highest for the midlatitudes of the
Northern Hemisphere. Areas of marginal productivity (e.g.,
the steppes of Central Asia and dryland ecosystems of
Australia), the Southern Hemisphere, and the tropics were
sampled by relatively few towers. For open shrublands,
this is especially problematic. Open shrublands exist across
large gradients in climate and floristics that were not well
captured with FLUXNET. This resulted in a muted NEP
response on the biome level that likely masked within‐
biome variability. Because open shrublands occupy ∼25%
of the vegetated biosphere, our estimates of changes in
source/sink status over the 62‐year reconstruction period
were likely biased downward; any positive sensitivity would
exacerbate reported trends (Figure 2a).
[31] As expected, relative confidence was highest where

FLUXNET towers and long‐term meteorological stations
showed the highest density: in the eastern conterminous
United States and Europe (Figure 5). Conversely, relative
confidence in our NEP trends was lowest for areas where
open shrublands are dominant, the tropics and the Southern
Hemisphere. Previous attempts to quantify the represen-
tativeness of FLUXNET have shown similar results. For
example, Sundareshwar et al. [2007] used multivariate
clustering of edaphic, topographic, and climatic fields, and
found high levels of representativeness coincident with the
higher density of FLUXNET towers and lower levels in
the Indian Subcontinent, the tropics (primarily Africa and
Indonesia) as well as open shrublands and dryland ecosys-
tems globally. Jung et al. [2009] used model‐tree ensembles
and found that FLUXNET least well represented the tropics
and Indian Subcontinent. Combining these literature‐based
assessments of representativeness with the composite uncer-
tainty developed here underscores the need for more obser-
vations of the coupled carbon and water cycle dynamics in the
tropics, open shrubland, and dryland systems globally, as well
as in Southeast Asia, including India.

4. Conclusions

[32] Terrestrial landscapes have the potential to undergo
large‐magnitude trends in carbon uptake or release associ-
ated with long‐term trends in hydrologic variables, partic-
ularly with respect to regional sources and sinks that often
greatly exceed flux totals. This was most evident in China,
Europe, and the Sahel region of Africa. Continued and
future hydrologic trends and variability can be expected to
modulate the long‐term background biotic sinks for CO2.
Although the magnitude of these changes is uncertain,
results presented here confirm that, even at the global scale,
hydroclimatic variation can induce sizable interannual var-
iability in terrestrial CO2 sources and sinks.
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