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Abstract

Savanna ecosystems are water limited and responsive to rainfall on short time scales, characteristics that can be exploited to estimate

fractional cover of trees, grass, and bare soil over large-scale areas from synthesis of remote sensing and rainfall measurements. A method is

presented to estimate fractional cover based upon the differing ways in which grasses and trees respond to rainfall, and implementation of this

method is demonstrated along the Kalahari Transect (KT), an aridity gradient in southern Africa. Seasonally averaged normalized difference

vegetation index (NDVI) and the sensitivity of the NDVI to interannual variations in wet season rainfall are used as state-space variables in a

linear unmixing model. End members for this analysis were determined on the basis of best fit to the observed data. The realized end

members were consistent with the qualitative characteristics of trees (high NDVI, low sensitivity of NDVI to interannual variations in

rainfall), bare soil (low NDVI, low sensitivity), and the transient grass/ bare soil area (moderate NDVI, high sensitivity). Observed sensitivity

of NDVI to rainfall was measured as the relationship between wet season NDVI and normalized rainfall over a 16-year period (1983–1998).

The unmixing model yields a north-to-south decrease in tree fractional cover that corresponds to the decrease in mean wet season

precipitation from 1600 to 300 mm along the KT (R2=.87). The fractional tree cover results compare favorably with available ground-based

observations. The potential extent of grass cover is limited by the dominance of trees on the northern end of the transect, peaks at the location

with approximately 450 mm of mean wet season rainfall, and is limited by rainfall in the arid southern portion of the transect. With mean

NDVI for grass inferred from the data, yearly estimates of tree, grass, and bare soil fractional cover can be derived. These annual estimates,

which are difficult to obtain from traditional unmixing procedures, are important parameters in fuel load and land–atmosphere exchange

models. No calibration or training sets were required for this analysis, and this method has the additional capability to predict fractional-cover

components for future rainfall scenarios.

D 2002 Published by Elsevier Science Inc.

1. Introduction

Savanna ecosystems are characterized by the coexistence

of woody and herbaceous vegetation, the relative abundance

of which defines important aspects of the biome such as fuel

biomass and combustion factors for fire (Hoffa, Ward, Hao,

Susott, & Wakimoto, 1999; Shea et al., 1996), fauna habitat

(Doergeloh, 2000; Dean, Milton, & Jeltsch, 1999), nutrient

cycling (Belsky, 1994; Frost, 1984), and resources for

human subsistence. Frequently stressed and sensitive to

change (Guenther, Zimmerman, Greenberg, Scholes, &

Scholes, 1996), savanna ecosystems are responsive to cli-

mate variability on relatively short time scales. Water is the

main driving force in shaping the vegetation composition

and distribution for these semiarid systems (Rodriguez-

Iturbe, D’Odorico, Porporato, & Ridolfi, 1999a, 1999b;

Smit & Rethman, 2000). The dynamic quality of the

vegetation with respect to precipitation forcing can be

monitored over a large spatial area with the aid of remote

sensing and inferences about rainfall–vegetation processes

in these savanna ecosystems can thus be developed. With

the added benefit of sufficient temporal coverage, remote

sensing can now be used to make predictions of the earth’s

vegetation dynamics with respect to future climate scenarios

based upon analysis of these past observations. In this paper,

we merge ground-based rainfall measurements with

remotely sensed data to infer the surface cover components

of a savanna system from the rainfall response properties of

the individual components.
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Several factors make the Kalahari Transect (KT) in south-

ern Africa an ideal location for assessment of this concept.

The KT is one in the global set of International Geosphere–

Biosphere Programme (IGBP) transects (Koch, Scholes,

Steffen, Vitousek, & Walker, 1995), spanning a north–south

aridity gradient from Angola and Zambia, through Botswana,

and into South Africa (Thomas & Shaw, 1993). A homoge-

neous aeolian sand formation underlies a large portion of the

transect, providing a relatively uniform background reflec-

tance. Savanna vegetation is optimal for the use of remote

sensing (Palmer & van Rooyen, 1998) because, unlike with

closed canopies, spectral saturation is not a problem, thereby

enabling the recognition by a remote sensor of subtle differ-

ences in the true amount of green biomass. Previous appli-

cations of remote sensing in Africa have focused on the link

between water availability and vegetation biomass (e.g.,

Farrar, Nicholson, & Lare, 1994; Fuller & Prince, 1996;

Nicholson & Farrar, 1994; Richard & Poccard, 1998). In

southern Africa, there is observed to be a strong correspond-

ence between the mean climatic distribution of precipitation

and green biomass, as measured by mean annual normalized

difference vegetation index (NDVI) (Goward & Prince,

1995), yet on shorter time scales the interannual variability

in precipitation does not, in general, result in much variability

in NDVI (Fuller, 1994). The exception to this was found to be

in ‘‘marginal zones’’ (Goward & Prince, 1995), areas

bounded by high and low annual precipitation such as the

middle region of the KT, where the vegetation appears to

respond strongly to year-to-year precipitation variability.

This raises the question: What factors associated with the

vegetation in these marginal zones cause the NDVI to be

more dynamic in its response to precipitation? We hypothe-

size here that relative mixture of trees and grasses plays a

primary role in defining this observed phenomenon.

In terms of strategies for using water, grasses are con-

sidered to be intensive exploiters while trees and shrubs are

extensive exploiters (Burgess, 1995). With dense, shallow

root systems, grasses make use of water that is ephemerally

available in the upper layer of the soil while trees, which

have root systems that penetrate both the shallow and deeper

soil layers, have a more persistent supply of soil water.

Relative to trees, grasses exhibit a greater areal expansion of

biomass in response to rainfall in savanna ecosystems.

Short-term greening of trees is restricted in areal extent by

the standing woody biomass. Additionally, the photosyn-

thetic pathways associated with trees and grasses differ such

that grasses, in general, are able to synthesize more carbon

per unit of water loss via transpiration than are trees

(Ehleringer & Monson, 1993). This was supported by flux

measurements taken along the KT (Scanlon & Albertson,

submitted). All these factors contribute to greater expected

NDVI response to precipitation by grasses relative to trees.

This is the distinguishing property of the vegetation com-

ponents that will be used to detect and model the dynamic

vegetation composition of the savanna ecosystem along the

KT, with wider applicability to savannas in general.

Subpixel-scale information about land cover classification

or composition has often been obtained from spectral

‘‘unmixing’’ analysis, a richly developed and active area in

the remote sensing and photogrammetry literature. This

analysis is based on the principle that a spatially coarse

spectral signal is a weighted function of the spectral contri-

butions from the smaller-scale (i.e., subpixel) individual

components. Linear unmixingmodels (e.g., DeFries, Hansen,

& Townshend, 2000; Settle & Drake, 1993; Smith, Johnston,

& Adams, 1985) used to detect surface cover are by far the

most common, and, although theoretically imperfect due to

the omission of the effect of multiple scattering between

cover types (Myneni, Maggion, & Jaquinta, 1995; Roberts,

Smith, & Adams, 1993), the errors associated with the linear

assumptions have been found to be relatively minor (Kerdiles

& Grondona, 1995). The output from the spectral unmixing

applications generally falls into two categories: land cover

classification types (i.e., forest, grassland, urban, etc.) or

fractional-cover components (i.e., tree, grass, bare soil). A

typical approach for determining either product, as outlined

in DeFries et al. (2000), first involves the generation of

numerousmetrics from themultiple spectral bands (channels)

that are present on remote sensing instruments. Often, the

phenology of the vegetation is captured by selecting metrics

that are related to the within-year variability measured by

particular channels or combinations of channels. Next, the

number of metrics is reduced to a smaller number of variables

for use in the unmixing model by performing linear discrim-

inant analysis. This procedure weights the metrics by max-

imizing the ratio of class means to within-class variance,

thereby enabling maximum spectral separation between the

cover types. Training sets, or spectral information from

preclassified cover types, can then be used to define the

spectral end members for the ‘‘pure’’ cover types for use in

the unmixing model. Another way that spectral end members

can be selected based on the metrics is through the use of

principle component analysis (Bateson & Curtiss, 1996;

Smith et al., 1985; Van Der Meer & De Jong, 2000). Both

of these methods rely fundamentally upon empirical relation-

ships between the vegetation and the spectral reflectance to

define the land surface cover.

In the method presented here for finding the fractional

surface cover components, we use a 16-year time series of

NOAA Advanced Very High Resolution Radiometer

(AVHRR) data along with the relationship that is derived

between rainfall and NDVI as a means for a process-based

identification of the tree, grass, and bare soil cover compo-

nents. As pointed out by DeFries et al. (2000), using a

multiyear AVHRR record must be cautiously undertaken

due to the artifacts that remain in the record as a result of

factors such as changes in sensors (NOAA-7 to NOAA-9 to

NOAA-11 to NOAA-14 satellites), the impacts of aerosols

from volcanic eruptions, other uncorrected atmospheric

effects, and drift in equatorial crossing time. These very real

problems require recalibration of the spectral end members

each year with traditional spectral unmixing applications.
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The sensitivity of the unmixing results to the recalibrated end

members can lead to inferred land cover changes that did not

actually occur (DeFries et al., 2000). By using the long term

mean values of NDVI and the regressed sensitivity of the

NDVI to rainfall along the KT, the net effect is that our

method is insensitive to shorter time scale variability in NDVI

that is not tied to variations in rainfall. As a consequence, we

are able to largely circumvent this aforementioned problem.

The objectives of this research are to (1) determine the

mean NDVI and sensitivity of NDVI to rainfall related to

the individual components of the surface cover (tree, grass,

bare soil) along the KT, (2) incorporate these properties in a

linear unmixing model to derive fractional cover, and (3)

develop a method to predict fractional cover in response to

various future rainfall scenarios.

2. Methods

2.1. Data

Monthly NDVI data at 8-km resolution along the KT

were acquired from the NASA/NOAA-sponsored AVHRR

Land Pathfinder data set (Agbu & James, 1994; James &

Kalluri, 1994) for the years 1983–1998 in the area bounded

by 12j to 26jS latitude and 20.4j to 24.7jE longitude. The

north–south oriented swath of NDVI data has the dimen-

sions of 196�61 pixels. The maximum NDVI value for

each pixel during a given month was assigned as the

monthly value in an effort to eliminate cloud cover con-

tamination; the Pathfinder processing team also applied

atmospheric corrections for Rayleigh scattering as well as

solar zenith angle. The analysis presented here focuses on

the interannual variability in the savanna vegetation, rather

than the within-year vegetation phenology, and therefore the

southern African wet season, in which the vegetation is at its

peak state, is used to represent the annual time series.

Hence, the monthly NDVI time series fields were condensed

into 16 ‘‘wet season’’ fields, representative of the averages

for the months January, February, and March of each year in

the data set. In actuality, the wet season in this region begins

in mid-October. However, in order to be consistent with

Grist, Nicholson, and Mpolokang’s (1997) findings in

Botswana that NDVI is most highly correlated with the

precipitation in the concurrent plus two preceding months,

the early portion of the wet season was not factored into the

wet season average.

Monthly rainfall data were linearly interpolated to the

same spatial resolution as the NDVI data from a 0.5j
gridded precipitation data set (New, Holme, & Jones,

1999). The original data were gathered from southern

African meteorological stations, approximately 11 of which

fall within the bounds of the KT area studied here (Hulme,

1992a), and were checked for quality control (Eischeid,

Diaz, Bradley, & Jones, 1991; Hulme, 1992b). The wet

season rainfall is taken as the total for the months of

November through March, covering a time frame that

precedes the wet season NDVI by 2 months. On average,

87% of the total yearly rainfall arrives during this 5-month

period for stations along the KT.

2.2. NDVI unmixing method

The linear unmixing technique that is applied to the wet

season data utilizes observed long-term relationships

between NDVI and precipitation, and assumes minimal

large-scale vegetation alterations or land conversion during

the 16-year period of analysis. We classify the fractional

cover for each 8�8-km area in this region into three broad

categories:

� a portion of the land surface that always remains as bare

soil, xb,only;
� a portion of the fractional cover that is woody vegetation

(trees or shrubs), xt; and,
� a remaining portion that consists of bare soil and

herbaceous vegetation (grasses or forbs) cover, xg/b.

The temporally constant xg/b fractional area is comprised

of the temporally variable bare soil and grass cover frac-

tions, xbtrans and xgtrans, respectively (Fig. 1), such that

xg/b=xbtrans+xgtrans. Note that tree fractional cover, xt, is

defined by the vertically projected area of the tree canopies

and can therefore contain underlying grasses.

The north–south aridity gradient of the KT provides an

ideal one-dimensional construct for the analysis. In order to

the cast the fractional-cover profile of the transect in one

dimension, spatial averaging was performed in the east–west

direction, roughly parallel with the isohyets. This spatial

averaging is denoted by the ‘‘<.> ’’ operator and is applied

along each of the 196 latitudinal positions i. With three

unknown fractional-cover components, three equations are

Fig. 1. Each pixel consists of three constant fractional covers that sum to

one: tree cover (xt), persistent bare soil cover (xb,only), and transient grass/

bare soil cover (xg/b). During wet years, the grass fractional cover (xgtrans)

makes up the majority of xg/b, while during dry years most of this area is

bare soil (xbtrans).
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needed to determine the fractional cover at each position i

along the transect. The first equation stipulates that the total

ground cover is made up entirely of the three temporally

constant cover classifications:

hxtðiÞi þ hxb;onlyðiÞi þ hxg=bðiÞi ¼ 1: ð1Þ

The second equation states that the temporal mean of the

observed wet season NDVI, aobs, at each position i is equal

to the sum of the mean NDVI associated with each compo-

nent j, aj weighted by its fractional cover, hxj(i)i:

athxtðiÞi þ ab;onlyhxb;onlyðiÞi þ ag=bhxg=bðiÞi ¼ haobsðiÞi:
ð2Þ

Temporal averaging is denoted by the ‘‘		 ’’ operator.

The values of aobs, calculated from 48 months of wet season

NDVI measurements, mask a number of temporally varia-

ble factors including vegetation cover, spectral interactions

between components, relative brightness of the components

(e.g., Hanan et al., 1991), as well as atmospheric- and

sensor-related shifts. Therefore, aobs should be thought of as

a general index of long-term greenness rather than being

interpreted in terms of spectral composition of red and near-

infrared reflectances. Implied from this is that the end

members in Eq. (2), aj , are not comprised of particular

red and near-infrared reflectances either but instead repre-

sent a measure of long-term greenness for the individual

components. The method by which aj are estimated,

presented in the next section, exploits the observed, approx-

imately linear mixing of the long-term greenness for use in

the linear Eq. (2).

The third equation, making use of the linear property of

the derivative, specifies that the overall sensitivity of the

NDVI to rainfall, bobs, is a function of the linearly weighted

sensitivities of the individual cover types, bj:

bthxtðiÞi þ bb;onlyhxb;onlyðiÞi þ bg=bhxg=bðiÞi ¼ hbobsðiÞi:
ð3Þ

The observed sensitivity of NDVI to rainfall can be

found at each pixel by:

bobs ¼
daobs
dr̂

ð4Þ

where r̂ is the normalized wet season rainfall:

r̂ ¼ ðr 	 r̄Þ=rr: ð5Þ

Here, r is the rainfall for a given wet season and r̄ and rr

are the temporal mean and standard deviation of wet season

rainfall, respectively. This normalization procedure is

intended to prevent the extremely high or low rainfall values

from disproportionately influencing the slopes of the

NDVI–rainfall relationships.

In evaluating the sensitivity of the NDVI to rainfall, bobs,

the 16-year time series for both NDVI and precipitation at

each pixel within the 196�61 grid were considered. Wet

season NDVI was plotted as a function of normalized wet

season rainfall, and the slope was determined from this

relationship on a pixel-by-pixel basis. Significance of the

linear fit relationship was evaluated on the basis of P<.1 for a

one-tailed test. Only those correlations that were deemed

significant on this basis were spatially averaged to generate

the one-dimensional hbobs(i)i along the KT.

2.3. End-member determination

This leaves the end-member values for the individual

cover types, the coefficients aj in Eq. (2) and bj in (3), as

the remaining unknown parameters needed to perform the

unmixing analysis. On a conceptual basis, relative esti-

mates of mean NDVI and sensitivity of NDVI to rainfall

for the individual components are evident from both color

and lateral growth considerations. Trees are expected to

have a high ā and a low b, the bare soil a low ā and low b,
while the transient grass/bare soil area is expected to have

a moderate ā and a high b. Pixels that contain more than

one of these cover types display an average, weighted by

their respective fractional covers, of the end-member

values. Therefore, when the sensitivity of the NDVI to

precipitation is plotted against mean NDVI, an envelope of

the data should define the end-member coordinates. We

allow the data to define the end members, rather than use

training sets of known cover type. The approach taken

here requires the conceptual theory of distinctly different

water-related dynamics for the cover components to hold

true in order to yield reasonable and accurate end mem-

bers. Therefore, we included only the data for the pixels

that have a significant (P<.1) sensitivity and we used a

constrained optimization technique to construct a triangle

that surrounded 99% of the points while minimizing the

area of the triangle. The coordinates of the vertices of the

triangle were consequently taken as end members (i.e., aj
and bj) for the unmixing model.

2.4. Fractional cover determined for individual years

The unmixing model determines, at each position along

the transect, the fixed fractional cover of trees, bare soil only,

and grass/bare soil areas. However, while hxj(i)i remain

fixed over the 16-year period, the actual fractional cover

of the bare soil and grass components fluctuate significantly

on an annual basis in response to the wet season rainfall

amounts. The bare soil fractional cover for a particular year,

xb, is equal to the sum of xb,only and xbtrans. The grass

fractional cover, xg, is then equal to xgtrans. In order to

partition xg/b into xgtrans and xbtrans, the NDVI value for

grass, ag, must first be known. This may be inferred from the

fixed fractional-cover results, annual rainfall amounts, end-

member values, and observed NDVI data. For individual
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wet seasons, the NDVI for the three fixed-cover types may

be expressed as:

hajðiÞi ¼ aj þ hr̂ðiÞibj: ð6Þ

With the wet-season-specific NDVI for trees and bare

soil along the transect determined in this manner, and with

the fixed fractional-cover areas known, the remaining NDVI

that must be associated with the grass/bare soil area during a

particular wet season can be found by inserting the spatially

averaged (6) into a non-time-averaged, transformed version

of (2):

haremainðiÞi

¼ haobsðiÞi 	 hatðiÞihxtðiÞi 	 hab;onlyðiÞihxb;onlyðiÞi
hxg=bðiÞi

	 /s

ð7Þ

where haobs(i)i is the remotely sensed NDVI that is spatially

averaged over latitudinal position i for a particular wet

season and /s is a correction factor that is applied to the

whole of the transect and accounts for sensor- and atmos-

pheric-related temporal variability. This factor is estimated

on an annual basis as the mean departures of aobs for a given
year from the significant, regressed aobs– r̂ linear relation-

ships. The theoretical lower limit to haremain(i)i for the entire
suite of wet seasons is approximately ab;only, the NDVI for

bare soil. The upper limit of haremain(i)i, which occurs

during a very wet year and represents a case in which grass

covers the entire area xg/b, is considered to be the NDVI for

grass. The upper bound of haremain(i)i for the suite of wet

season rainfall amounts is therefore assigned as ag.
With ag inferred in this manner, the fractional-cover

components hxg(i)i and hxb(i)i can be calculated for specific

wet season rainfall amounts by:

hxbðiÞi ¼ hxb;onlyðiÞi þ hxbtransðiÞi

¼ hxb;onlyðiÞi þ hxg=bðiÞi
ag 	 hag=bðiÞi

ag 	 hab;onlyðiÞi

� �
ð8aÞ

Fig. 2. (a) Mean and (b) temporal standard deviation of the AVHRR-NDVI fields (1983–1998) for the Kalahari Transect (KT). Wet season for NDVI is taken

as January–March.
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and

hxgðiÞi ¼ hxgtransðiÞi

¼ hxg=bðiÞi
hag=bðiÞi 	 hab;onlyðiÞi

ag 	 hab;onlyðiÞi

� �
ð8bÞ

In both equations, the fractional area hxg/b(i)i is multi-

plied by a coefficient ranging between 0 and 1. This

coefficient reflects the relative position of the rainfall-

specific hag/b(i)i between the NDVI end members of bare

soil, hab,only(i)i, and grass, ag . For the extreme cases in

which hag/b(i)i<hab,only(i)i or hag/b(i)i>hag(i)i, the area hxg/b
(i)i is assigned as entirely bare soil or entirely grass,

respectively.

3. Results

Fields of the 16-year wet season mean and interannual

standard deviation of NDVI are shown in Fig. 2a and b,

respectively. The mean NDVI shows a clear, general

decrease from north to south over the KT. The standard

deviation in the NDVI peaks near the middle of the transect,

bounded by areas of lesser interannual fluctuation in the

green biomass cover to the north and south. The slightly

speckled appearance of the standard deviation field is

caused by AVHRR sensor noise that was introduced at

some of the pixel locations during the 1992 wet season.

The mean and temporal standard deviation of wet season

precipitation are shown in Fig. 3a and b, respectively. A

well-defined north–south mean precipitation gradient is

apparent based on the 16 years of data. The pattern

displayed by the mean rainfall field is similar to that for

the NDVI (Fig. 2a). This similarity does not hold for the

standard deviation fields, however. The high temporal

standard deviation in seasonal rainfall found in the northern

half of the transect is not colocated with the high interannual

variability in NDVI located in central Botswana (Fig. 2b). It

is evident based on this qualitative comparison that the

mean annual rainfall is highly related to the amount to green

biomass (as measured by NDVI) along the KT, while the

interannual variation in the green biomass is not solely

Fig. 3. (a) Mean and (b) temporal standard deviation of the rainfall fields (1983–1998) for the KT. Wet season for rainfall is taken as November–March.
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controlled by interannual variability in rainfall. Instead, the

vegetation composition plays an important role in determin-

ing the extent of the high-frequency variability in NDVI.

Sensitivity of NDVI to precipitation, bobs, at each pixel

was evaluated by determining the slope of the best-fit line

between the yearly NDVI values and the corresponding

normalized precipitation. Fig. 4 shows the sensitivity for all

of the pixels with significant (P<.1) rainfall–NDVI rela-

tionships. Of the initial pixels, 55.7% met this selection

criterion for significance, a large proportion considering the

relatively rough (0.5j) resolution of the original rainfall

data. This represents a 22% improvement on the number of

significant relationships yielded by a linear fit between the

annual NDVI values and the nonnormalized wet season

rainfall totals. Like the temporal variance in NDVI, the peak

in the NDVI sensitivity to rainfall is located in the interior of

Botswana where annual rainfall is moderate. The cross-

sectional averages of these sensitivities, hbobs(i)i, are used

as input for the unmixing model along with the spatial

average of the temporal mean NDVI field, haobsðiÞi. These
profiles along the KT are shown in Fig. 5.

The coefficients aj and bj, used in Eqs. (2) and (3),

respectively, are determined from the scatter plot of bobs

versus aobs (Fig. 6). This plot consists of the bobs values

shown in Fig. 4 as a function of their corresponding mean

NDVI values, aobs. Only points having a significant relation-

ship between wet season NDVI and wet season rainfall were

used. Three different cover types were originally assumed to

represent the land surface and, indeed, the data do fall in a

pattern that supports this a priori assumption of linear

mixing with three end members. Specific values for the

end members were assigned as the coordinates of the

Fig. 4. Slope in the relationship between wet season NDVI and normalized wet season rainfall for each pixel, bobs. Only those pixels having a significant

( P<0.1) relationship are shown.
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triangle vertices that bound the data. These vertices were

categorized on the basis of the qualitative characteristics of

tree, bare soil, and transient grass areas. Trees, which have

multiple levels of green foliage, deep roots, and a relatively

stable deep water supply, are associated with a mean wet

season NDVI of 0.82 and a low sensitivity to interannual

variations in precipitation of 0.008 units NDVI/normalized

rainfall. Bare soil has a minimal mean NDVI of 0.09 and has

a slightly higher sensitivity to precipitation of 0.018. This

slight NDVI increase for wetter soils is in agreement with

prior findings that this index increases with decreasing soil

brightness for constant vegetation cover (Huete, Jackson, &

Post, 1985; Huete & Tucker, 1991). Finally, the transient

grass/bare soil area has a moderate mean NDVI of 0.25 and

is highly sensitive to interannual variations in precipitation,

with a value of 0.099 for bg/b. These coefficients taken from

the vertices of the triangle are then used in the linear

unmixing procedure.

The unmixing results for the KT shown in Fig. 7 indicate

decreasing tree fractional cover along the north–south mean

annual rainfall gradient. The area that is persistently bare

soil remains relatively level for the northern two-thirds of

the transect and then increases over the most arid region to

the south. Finally, the transient grass/ bare soil area, hxg/b(i)i,
peaks between 22j and 23jS latitude, corresponding to a

tree fractional cover of about 22%.

Fractional-cover estimation on a yearly basis requires

the determination of the NDVI end member for grass, ag,
which was achieved by plotting the results of Eq. (7) for

each of the 16 years (Fig. 8). The correction factor in Eq.

(7) was small for each of these years, in the range

	0.064</s<0.081. Theoretically, the lower range of

Fig. 6. Scatter plot of aobs and bobs for all of the pixels having a significant

( P<0.1) relationship for bobs (those shown in Fig. 4). The triangle is fit to

minimize the area while retaining 99% of the data within its bounds. End-

member values for the linear unmixing model are taken as the coordinates

of the vertices of the triangle.

Fig. 7. Results of the linear unmixing model using the long-term NDVI and

rainfall data.

Fig. 8. Plots of haremainðiÞi for the 16 years along a portion of the transect.

The mean NDVI for grass, ag, is estimated from the upper bound.

Fig. 5. Latitudinal averages of mean NDVI, haobsðiÞi , and sensitivity of

NDVI to rainfall, hbobs(i)i, along the transect, used as input to the linear

unmixing model.
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haremain(i)i should be approximately ab;only during dry years

when there is very little grass, and the upper range should

be ag, during wet years when grass covers the entirety of

this area. Fig. 8 shows the results for the suite of years,

covering the latitudes 20–24jS, where hxg/b(i)i is relatively
large. Elsewhere on the transect, the smaller xg/b causes

amplification in any sensor noise that may be associated

with the calculation of haremain(i)i from Eq. (7). This figure

shows remarkably level lines along the selected portion of

the transect for the individual years, with the haremain(i)i
levels representing the composite NDVI for the transient

grass/bare soil area. The upper bound, estimated at 0.55, is

assigned as the NDVI for the grass.

With ag identified, fractional-cover amounts were esti-

mated for sample wet and dry years, as shown in Fig. 9. For

a wet year, 1989, in which the rainfall was greater than the

mean at each latitudinal position along the transect (see

inset), the grass cover approaches its potential area, hxg/b(i)i.
In the case of a dry year, 1995, the grass cover is very low at

all positions along the transect, resulting in an expansion of

the bare soil cover.

4. Discussion

Although potential limitations associated with the anal-

ysis of multiyear AVHRR-NDVI data have been recognized

(e.g., DeFries et al., 2000), the long-term temporal aspect of

the data can be extremely beneficial for extracting informa-

tion about land-cover processes in water-limited environ-

ments when carefully analyzed. Rather than basing our

analysis on relative differences in NDVI between years,

which would be problematic due to shifts in sensor-related

instead of vegetation-related factors, we use the long-term

mean NDVI and the sensitivity of the NDVI with respect to

an independently collected variable, rainfall, as input to the

model. Hence, only temporal variability in NDVI tied to

precipitation affect the results. The method presented here

for fractional-cover derivation is based upon fundamental

vegetation processes, rather than on empirically derived

correlations. Training sets and calibration procedures are

not needed. Furthermore, this method allows for future

predictions of total NDVI and fractional cover along the

transect, using rainfall as input, that are based solely upon

previous satellite and rainfall observations.

Previous studies have found the relationship between

interannual variations in rainfall and NDVI to be weak in

southern Africa, except for in the moderately dry areas

(Goward & Prince, 1995; Richard & Poccard, 1998). In

the analysis presented here, we first had to define the

temporal and functional attributes of the interannual rain-

fall–NDVI relationship, since no consistent methodology

currently exists. We chose to focus on the wet season,

limiting the window to the time of the year when the

vegetation is near its peak and is effected by the antecedent

rainfall amounts. We found that using normalized rainfall in

the rainfall–NDVI relationship improved the number of

pixels meeting the significance criterion, since this appro-

Fig. 9. Comparison of fractional-cover components for a wet year (top) and a dry year (bottom). Insets show the rainfall along the transect for the particular wet

season (solid line) in relation to the wet season mean (dashed line).
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priately limits the weight of extreme rainfall anomalies. The

majority of wet season rainfall in this region comes in the

form of short-lived convective storms. Above a certain

threshold, storm precipitation can exceed the amount that

can be of use for augmented grass growth. On the other

extreme, the retreat of the grass cover during drought years

is somewhat attenuated by the presence of residual soil

moisture. The strongest correlations exist within Botswana,

where the slope in the rainfall–NDVI relationship is great-

est. This slope, or sensitivity, decreases on the northern end

of the transect where the mean annual precipitation is higher

(Fig. 4) and tree shading may limit grass potential. The low

density of points having significant relationships in the

northern end of the transect may be attributable to the

decreased signal-to-noise ratio of the data here. Temporal

variations in sensor-related factors can drown out any subtle

rainfall–NDVI relationships that may be present in this

northern region where NDVI does not vary much from year

to year. For these tree-dominated regions, there may be a

more suitable alternative to the significance criterion pre-

sented here.

The geometric outline of the data for bobs as a function of

aobs (Fig. 6) suggests three vertices, and the cover types that

the end members represent are readily apparent. The tran-

sient grass/bare soil area has by far the highest sensitivity to

NDVI, but has a mean NDVI that is closer to that of bare soil

than trees. This is due in part to the actual grass cover area

being, on average, a fraction of area xg/b. Ideally, the

positions of the end members would be orthogonal in order

to facilitate linear mixing with the least amount of uncer-

tainty. From the position of the end members, it is apparent

that mean NDVI along the transect will largely control the

fractional cover of trees and the sensitivity to rainfall will

largely control the extent of the potential grass area. Indeed,

this is the case with an R2=.99 for the former relationship and

an R2=.90 for the latter. While these correlations may be

high, the absolute amounts of the fractional-cover areas are

controlled by the end-member positions. Percent cover along

the transect shows an expected decrease in trees, but the

potential grass area, hxg/b(i)i, peaks where the mean wet

season precipitation is between 400 and 500 mm (Fig. 7).

Another way to examine the unmixing results is to

consider the relationship between the fractional tree cover

and the fractional potential grass cover. Fig. 10 shows that

the potential grass area sharply peaks when the tree cover is

approximately 22%. It appears that above approximately

450 mm of mean wet season precipitation, the maximum

extent of the grass cover is limited by the tree cover, while

below this threshold the maximum extent of the grass cover

is limited by the mean wet season precipitation. The frac-

tional tree cover over the KT is highly related to the mean

wet season precipitation (R2=.87). The persistent bare soil

area is remarkably constant over the wetter portion of the

transect, suggesting an upper threshold on the percentage of

the land surface that can be cover by vegetation in this tree-

dominated portion of the savanna system.

Ground measurements of fractional tree cover taken at a

number of locations along the KT (Scholes, Dowty, Caylor,

Parsons, & Shugart, in press), can be compared with the

unmixing model results. Most of the field sites were selected

on the basis of being representative of the immediate

surrounding area, as judged from high resolution satellite

images. Fractional cover was derived by sampling methods

for tree individuals. When compared with the modeled

fractional cover, it is evident that the analysis framework

captures the decline in tree cover from north to south along

the transect (Fig. 11). The most significant departures are

apparent on the northern end of the transect, which could be

the result of cross-sectional averaging over latitudinal posi-

tions in the unmixing method, whereas the field measure-

ments were taken at points. For instance, the northernmost

Fig. 10. Fractional potential grass cover, hxg/b(i)i, as a function of fractional

tree cover, hxt(i)i. Bare soil cover is largely constant on the wetter end of the
transect, making up the difference between the potential grass cover and its

theoretical upper limit.

Fig. 11. Model results for fractional tree cover, hxt(i)i, compared with field

data measured at positions along the KT. Fractional tree cover from

DeFries, Hansen, Townshend, Janetos, and Loveland (2000) is also shown.
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field measurement, which has a much higher fractional tree

cover than the model-predicted value for this latitude, was

taken from an area to the east of the Zambezi flood plain

that has a higher NDVI than the cross-sectional average at

this latitude (see Fig. 2). This field location was unlike the

other sites in that it was selected on the basis of representing

a nearly closed canopy (R. Scholes, pers. comm.). An

independently derived fractional tree cover estimate is

shown on the graph as well from DeFries et al. (2000).

These data were taken from a global tree cover product so

comparison with the regional analysis is perhaps incongru-

ent. However, there is a noticeable offset between the two

methods along the transect. As for grass cover, model

validation with respect to predictions of this component is

difficult due to its transient nature.

The method for determining fractional cover presented

here assumes that there are no shifts in tree density distri-

bution or land conversion along the transect over the 16-

year period. The low population density of the Kalahari

region limits the potential of anthropogenic vegetation

disturbance, but some deforestation or grazing effects likely

have resulted in localized land cover changes during this

time. Since the focus of this paper is the regional climate–

vegetation interaction, we average over latitudinal bands

along the transect in order to avoid impact from some of

these smaller-scale factors. Although woody vegetation

encroachment has been documented in a savanna systems

over a period of several decades due to long term shifts in

precipitation, such as in Texas (Archer, Scifres, Bassham, &

Maggio, 1988), we assume that this has not occurred on a

large scale for the KT during the time in which the remote

sensing data were collected. No general trends in regional

rainfall amounts were observed to have occurred during the

16-year period. The unmixing method presented here pro-

vides estimates of fixed areas that are either steady (xt and

xb,only) or transient (xg/b) in composition, but this method

also allows for yearly estimates of the fractional cover based

upon rainfall (Fig. 9). The ability to make fractional-cover

predictions for future rainfall scenarios from past observa-

tions provides a unique advantage over traditional unmixing

models.

Goward and Prince (1995), based upon time series of

NDVI and rainfall data in southern Africa, suggest that the

there is some ‘‘memory’’ in the system from prior years

such that the NDVI response of a particular year is influ-

enced by the rainfall in the previous year. This is an

interesting concept that can be applied to the model frame-

work presented in this paper. The derived cover areas,

hxt(i)i, hxb,only(i)i, and hxg/b(i)i, along the KT can be thought

of as a matrix that converts an input of rainfall along the

transect into a wet season-specific output of hxt(i)i, hxb(i)i,
and hxg(i)i. If there is indeed some memory in the system,

this memory may be a direct function of the tree, grass, and

bare soil cover from the previous year. For this conceptu-

alization, as shown in Fig. 12, the vegetation cover yielded

by a wet season rainfall scenario would alter the matrix,

which would in turn affect the next year’s vegetation cover.

For a simple conceptualization, the memory for grass could

be physically represented by seed dispersal. Following a wet

season with above average rainfall, the grass cover area may

be more sensitive to rainfall due to the presence of more

widely distributed seeds, which would be represented in the

model by hxg/b(i)i gaining size at the ‘‘expense’’ of

hxb,only(i)i. Lower frequency alterations, such as shifts in

fractional tree cover, could be represented by slight

increases or decreases in hxt(i)i at the expense of hxg/b(i)i,
in response to rainfall anomalies relative to the mean wet

season rainfall needed for a stable hxt(i)i. Parameter-inten-

sive methods have been developed to describe localized

tree–grass coexistence in savanna systems (Rodriguez-

Iturbe et al., 1999a, 1999b); however, there is justifiable

need for the development of lower-dimensional models that

rely on some of the larger-scale relationships between frac-

tional cover and rainfall that can be observed via remote

sensing.

5. Conclusions

There currently exists the need to establish estimates of

fractional surface cover over large geographical areas for use

in fuel load models of biomass burning as well as in land–

atmosphere exchange models. In both cases, the composi-

tional mixture of trees and grass plays a major role in

defining the function of the system. Reliable multiyear

estimates of fractional cover in savannas have proven to be

elusive, however. Additionally, large-scale linkages between

rainfall and vegetation cover dynamics have yet to be

satisfactorily explored. In this paper, we developed and

presented a framework for merging time series of remotely

sensed NDVI and ground-measured rainfall to estimate

fractional cover based upon the disparate growth character-

istics of trees and grass in response to interannual variability

in rainfall in a water-limited system. An unmixing procedure

was introduced that relies upon quantifying the temporal

mean NDVI and the sensitivity of NDVI to interannual

variations in rainfall for individual cover components. The

derivation of end members for the unmixing model rested

upon—and supported—the validity of the conceptual theory

Fig. 12. Schematic diagram showing the interface of the remote sensing

results with a tree/grass interaction model to predict future surface cover in

response to climate variability.
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of distinctly different water-related dynamics for these com-

ponents.

This represents an alternative to traditional methods for

finding fractional cover, which often involve the use of

training sets in the spectral unmixing of empirically derived

metrics. Year-to-year variations in atmospheric and sensor-

related factors can limit the potential applicability of tradi-

tional unmixing methods to single-year time frames since

recalibration can induce spurious differences in inferred

cover composition between years. The method presented

here uses long-term data that isolates the response of NDVI

to variations in rainfall, and by doing so fractional-cover

estimates for specific years can be generated. No a priori

information is used as input to the model. Predictions of

fractional cover in response to future rainfall scenarios can

also be formed on this basis, although long-term predictions

must include dynamic alterations in the values of hxt(i)i,
hxb,only(i)i, and hxg/b(i)i. This could account for the effects

of woody vegetation encroachment or recession, which were

assumed to be negligible on a regional scale over the 16-

year period of analysis.

We used the KT in southern Africa as a site to apply the

rainfall–NDVI unmixing method. We found a strong rela-

tionship between fractional tree cover and mean wet season

precipitation along the transect (R2=.87). Potential grass

cover peaked at approximately 450 mm of mean wet season

precipitation. Above this value, the potential grass area was

found to be controlled by the tree cover. Below 450 mm, the

potential grass area appeared to be limited by the available

rainfall. Estimates of actual tree, grass, and bare soil frac-

tional cover for individual wet seasons were also generated

by this method, illustrating the dynamic conversion between

bare soil and grass areas as a result of differing rainfall in

wet and dry years. Although we focus our analysis on this

particular regional setting, the applicability of this method to

savannas in general looks to be promising.
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