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Biol 206/306 – Advanced Biostatistics 

Lab 12 – Bayesian Inference 

Fall 2016 
 

By Philip J. Bergmann 
 

 

0. Laboratory Objectives 
1. Learn what Bayes Theorem and Bayesian Inference are 

2. Reinforce the properties of Bayesian Inference using a simple example 

3. Learn what the Markov Chain Monte Carlo approach entails 

4. Learn to obtain a posterior probability distribution from MCMC 

5. Learn to test an hypothesis using MCMC output 

 

 

1. Bayes Theorem and Bayesian Inference 
Bayesian Inference (BI) is a statistical approach that is founded on Bayes Theorem.  Bayes 

Theorem is a probabilistic formula that allows one to calculate a posterior probability 

distribution, given a dataset, a model or hypothesis, and a prior probability distribution.  

Bayes Theorem can be expressed as: 
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In Bayes Theorem, the approximation of P(Data|HA) is actually a familiar quantity, in that it is 

the likelihood of your data given a model – this is something that you have obtained from 

analyses that you have done in previous labs.  The term P(Data) is considered a scaling term that 

is important to making the mathematics work out, and will not be considered further today. 

 

The term P(HA) is the prior probability distribution, often simply referred to as the prior.  This is 

a distribution that characterizes our understanding of the phenomenon being modeled before we 

look at our data.  The prior can be obtained from previous studies published in the literature, a 

pilot study, a guess, or it can be uninformative.  Each parameter in a model will have a prior.  

For example, if a parameter of interest can range from zero to one, and we have a pretty good 

idea that the parameter’s value is >0.5, we might use a prior probability distribution that gives 

high probabilities for values 0.5-1, but low probabilities below 0.5 (for example, a normal 

distribution with mean 0.8 and variance 0.2, expressed as N(0.8,0.2)).  If we have no idea what 

parameter value is most likely, we might use a prior that is uniform between zero and one. 

 

Finally, the term P(HA|Data) is the posterior probability distribution, also simply called the 

posterior.  It takes both our data (the likelihood of our data, given the model) and the prior into 

consideration. 

 

BI is attractive because it offers two main advantages over frequentist approaches.  First, the 

posterior represents the probability of an hypothesis/model, given the data, and this is what one 

ultimately would like to estimate, not the probability of the data given the hypothesis.  Second, 
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BI allows for the incorporation of prior knowledge into a study.  Since science works by building 

on previous work, a formal, quantitative framework to do this is attractive.  However, when 

using BI, one must also be careful to interpret the results correctly.  Specifically, the posterior 

represents the probability of our belief in a certain hypothesis, and not the relative frequency of 

events.  In addition, parameters (including hypotheses, likelihoods, priors, and posteriors) are 

viewed as random variables that are sampled from a distribution, not as fixed values that we are 

trying to estimate. 

 

 

2. A Simple Example Using Bayesian Inference 
We will use a simple example to get more comfortable with Bayesian Inference.  There is no 

dataset for this example, but it will show how BI can be used.  The general format of this 

exercise is modified from Shahbaba (2011. Biostatistics with R. Springer: New York).  In this 

example, you are studying how a trematode parasite influences reproduction in female 

stickleback fish.  Since you discovered this new parasite of stickleback, you know nothing of 

how it influences reproduction of the fish.  You collect some very basic data in the lab, counting 

how many females successfully lay eggs when parasitized and when not.  Your results are as 

follow: 

 Parasitized Not Parasitized 

# of Females that Lay Eggs 16 20 

Total # of Females 20 20 

 

You are interested in using the data in the table above to find the posterior probability 

distribution of a female reproducing if she is parasitized.  From the information given, what 

would you choose the prior probability distribution to be?  Simply describing its shape is okay. 
 

 

 

 

Population proportions (proportion of individuals doing something) is frequently modeled as a 

beta distribution, which is just another type of distribution, like normal or uniform.  This is 

convenient because it also makes the calculation of a posterior from some data and a prior 

computationally easy (note that most models and applications of BI actually require extremely 

intensive math).  The beta distribution ranges from 0 to 1, and has two parameters that define its 

shape, called α and β.  The mean of a beta distribution can be calculated as: 

 

���
 =
α

α + β
 

 

You can also plot the shape of this distribution using the beta density function, dbeta, in R: 
> plot(seq(0,1,0.01),dbeta(seq(0,1,0.01),α,β)) 

 

In the dbeta function, the first argument is a vector that lists the values for which to calculate the 

beta density, and the second and third arguments are simply the two shape parameters. 
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Try this for the following values of the parameters.  Describe each distribution. 

α β Description & Mean 

2 8  

1 1  

4 4  

8 2  

 

Given your answer to the question on the previous page, which of these options would you use 

for the prior probability distribution in the current analysis? 
 

 

 

As mentioned above, the posterior can easily be calculated from the prior if you are happy 

modeling each with a beta distribution.  You can calculate the posterior population proportion 

(proportion of females reproducing) as follows: 
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In this equation, Beta(α,β) is the prior probability distribution, y is the number of individuals 

undergoing the event of interest (i.e., laying eggs), and n is the total number of individuals 

studied.  For the dataset provided on the previous page, calculate the posterior beta 

distribution by hand.  What are its two shape parameters?  Express your answer as 

"Beta(#,#)". 
 

 

 

For the sequence of beta distribution values given above (in your plots), save the beta 

distribution for your prior as object “prior1”, and for your posterior as “post1”.  Assemble the 

sequence of beta distribution values, your prior densities and your posterior densities into a 

data frame.  Plot the prior and posterior on the same plot against beta value, save the graph 

using the menus, and paste the plot here: 
 

 

 

 

 

 

Assignment: (4 points to end of section) 

What is the mean of your posterior?  How does it compare to just calculating the proportion of 

females that laid eggs in the study?  Why are the two values different? 
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As you may have noticed, using 20 individuals may not result in the most accurate estimates of 

how the trematode affects female reproduction.  You repeat your study with more female 

sticklebacks.  You also do the study in two lakes.  Lake A is the same as was used in your pilot 

study, Lake B is new.  This time you use 80 females that you infect and 80 as controls from each 

lake.  Again, all the controls from both lakes lay eggs.  Of the 80 infected females, 67 lay eggs 

from Lake A, and only 36 lay eggs from Lake B.  Repeat the analysis for each lake, but use the 

posterior from your pilot study as the prior for both of these new analyses.  Calculate the 

posteriors, expressing each as Beta(α, β): 

 

 

 

 

 

Also save the density functions for each of your posteriors along your sequence of beta values, 

as objects “postA” and “postB”.  Plot your new prior and both posteriors against the beta 

values, and paste the plot below. 
 

 

 

 

 

 

 

3. The Markov Chain Monte Carlo Approach to BI 
As mentioned above, for virtually all applications of BI, the mathematics are very daunting.  In 

fact, it was not until the 1990s when scientists discovered how to get around the mathematical 

hurdles and estimate a posterior probability distribution for sophisticated problems.  Shortly 

after, BI began to be applied in a variety of applications.  In all of these applications, a Markov 

Chain Monte Carlo (MCMC) approach is used.  An MCMC run starts at a random starting point 

in parameter space and follows a directed random walk through parameter space until likelihood 

is maximized.  Once an MCMC arrives at near the maximal likelihood, it wanders in its vicinity, 

visiting various relatively likely values of parameters.  It “visits” each parameter value in direct 

proportion to that value’s posterior probability, and so a large sample of these visits produces a 

posterior probability distribution for each parameter and the likelihood.  This is explained and 

illustrated in lecture. 

 

MCMC analyses often run for millions or billions of iterations, and so can take hours, days, or 

even months to complete, and this is certainly a limitation of the approach.  (In the estimation of 

phylogenetic trees, where any analysis can take a long time, BI actually provides a computational 

savings because it simultaneously estimates clade support values.)  MCMC analyses can be done 

in R, but due to time limitations, we will not be doing the actual analyses.  Instead, we will 

examine the raw output of some MCMC analyses that are already done and test hypotheses of 

trait evolution.  Each of the MCMC analyses that you will use took approximately eight hours to 

run on a laptop. 
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The dataset that was analyzed consists of data for eighteen species of phrynosomatine lizards and 

a phylogenetic tree (Bergmann et al. 2009. Directional evolution of stockiness in lizards 

coevolves with ecology and locomotion in lizards. Evolution 63: 215-227).  You will be testing 

for an evolutionary correlation between maximal relative horn length and relative velocity.  

Maximal relative horn length is a measure of the degree to which a species is protected by horns 

to ward off predators; and relative velocity is the maximal speed a lizard can run in body lengths 

per second.  Defending oneself with horns and running away are two strategies for not getting 

eaten by a predator.  The goal is to test whether slower lizards have longer horns (because they 

need to be better defended).  We will test for trait co-evolution by using one MCMC analysis that 

uses a BM model of trait evolution for each trait, and one MCMC analysis that uses a BM model, 

plus has a parameter for the covariance between two traits.  By comparing these models, we can 

test whether two traits have evolved in a correlated manner.  What alternative approach could 

you use to test these hypotheses? 
 

 

 

Download the Excel spreadsheet for this lab and open it.  The spreadsheet contains two 

worksheets, one for each MCMC analysis of relative horn length and relative velocity.  One 

analysis assumes no correlation among traits, and one provides an extra parameter for 

covariance.  Looking at the output, you will see that the first column contains the iteration 

number of each sampled iteration.  The tree column contains which phylogenetic tree was used 

for each iteration.  Since we had only one phylogeny, this is always the same.  If you had 

multiple phylogenies that spanned the range of supported phylogenies, you could incorporate 

phylogenetic uncertainty into the analysis.  People sometimes will use a posterior of 

phylogenetic trees to do this.  The next column is the log-likelihood of the model with the 

parameter values for that iteration.  The HMean column is the harmonic mean of log-likelihoods 

for the sampled parameter values up to the current iteration.  The alpha parameter for each trait is 

the ancestral reconstruction for the base of the tree.  The variance for each trait is the σ2 

parameter – the rate of evolution.   Finally, the Covar column is the covariance between the two 

traits.  If it is zero in all iterations, then the model does not include a covariance parameter and 

the traits are assumed to follow independent BM models of evolution.  How many iterations was 

each MCMC analysis run for? 
 

 

The large number of iterations makes it necessary to sample from the MCMC run only once in a 

while because each iteration would otherwise take up one line in the spreadsheet, resulting in an 

excessively long spreadsheet.  How frequently were the MCMC runs you have at your disposal 

sampled? 
 

 

As an MCMC run moves from its random starting position to the likelihood maximum, it is not 

sampling from the posterior probability distribution.  This happens only once it has arrived near 

the likelihood maximum.  The part of the MCMC where it is traveling towards the optimal area 

must be discarded from consideration, and is called burn-in.  Each parameter value, and the 

likelihood will undergo a burn-in period and the longest burn-in should be used to determine 

what to discard.  Only when the MCMC is stationary (in the vicinity of the likelihood 
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maximum), can you study its posterior distributions.  You can estimate the burn-in period by 

simply plotting log-likelihood or a parameter value against iteration number.  The harmonic 

mean of the log-likelihood is provided because it gives the most rigorous estimate of the burn-in 

period and it will be used later to compare models.  In Excel, plot the log-likelihood, the 

harmonic mean of log-likelihood, and each of the parameter values against iteration number.  

What is the approximate length of the burn-in period in each case to the nearest 10 million 

iterations?  Fill in your findings in the table.  Note that "Horn" is trait 1 and "rVel" is trait 2. 
 

Measure Horn-rVel no correl Horn-rVel correl 

log(L)   

H. Mean (L)   

Alpha 1   

Alpha 2   

Variance 1   

Variance 2   

Covariance N/A  
 

For one of these two MCMC analyses, provide a plot of log-likelihood and its harmonic mean 

against iteration number.  Identify the burn-in period that you would use for that analysis.  

Using Excel to make your graph is fine, no need to use R. Insert the graph here. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now that burn-in is identified for each analysis, you can calculate mean and standard deviation 

for the log-likelihood and parameters.  For mean log-likelihood, you can simply take the 

harmonic mean from the last iteration of the analysis.  Calculate its standard deviation in the 

usual way from the likelihood column. 
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Assignment: (6 points – to end of worksheet) 

Delete the rows in each dataset that constitute the burn-in period, and then calculate mean 

(=AVERAGE()), and standard deviation (=STDEV()) for each quantity in the table below.  

The “fill down” capability in Excel will also be useful. 
 

 Horn-rVel no correl Horn-rVel correl 

Burn-in   

Measure Mean SD Mean SD 

Likelihood     
Alpha 1     
Alpha 2     
Variance 1     
Variance 2     
Covariance N/A N/A   
 

The next step in the analysis is to compare models.  Similar to the labs using a model-based 

approach, you have fitted two models to the pair of traits with the intent of finding the better 

model.  What are the two models that you fit to the pair of traits? 

 

 

 

 

You could calculate AIC values to compare models, but a Bayesian Inference approach suggests 

that you should use a Bayesian approach to comparing models as well.  A Bayesian Information 

Criterion (BIC) exists and can be used for this purpose.  Another approach is to use Bayes 

Factors (BF).  BFs compare two models, rely on a quantity called a marginal likelihood, and 

can be interpreted in a similar way to an AIC ∆ value.  When BF < 2, there is weak support for 

one model over the other – the two models are about equal.  When BF > 10, there is very strong 

support for one model over another.  BFs between 2 and 10 indicate moderate support for the 

better model.  The marginal likelihood is estimated with the harmonic mean of the log-

likelihood.  Bayes Factors can be calculated as follows: 

 

�� = 2�log� !"#$$#%	'()#*	 − log� !+(%,#	'()#*		 
 

Since the output already provides harmonic means of log-likelihoods, you can calculate BF 

simply by taking the difference in harmonic means of log-likelihood for the two models and 

multiply by two.  Do this for your analysis.  Provide the BF, and give your conclusions about 

which model is preferred and how strongly it is supported.  What are your biological 

conclusions about the evolution of the traits? 
 

 

 

 

 

 



Lab 12: Bayesian Inference – Page 8 

 

Using the best model, which trait is evolving faster (in the tables above, the traits are listed in 

order they appear in the output)?  Explain your answer. 

 

 

 

 

 

If the correlated evolution model is better supported, calculate the evolutionary correlation 

between the traits so that it is more easily interpretable.  A correlation can be calculated from 

a covariance and standard deviations for two traits, which are estimated as the parameters of 

the model: 
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