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Biol 206/306 – Advanced Biostatistics 

Lab 8 – Mantel and Randomization Tests 

Fall 2016 
 

By Philip J. Bergmann 
 

 

0. Laboratory Objectives 
1. Learn what a randomization test is and how it relates to a permutation test 

2. Learn how to calculate distance matrices in R 

3. Learn how the Mantel test works and how to do it in R 

4. Learn how the partial Mantel test works and how to do it in R 

5. Learn when to use a randomization test 

6. Do a randomization two-factor ANOVA in R 

 

 

1. Randomization and Permutation Tests 
Randomization and permutation tests are considered non-parametric tests because they avoid 

using a standard test statistic distribution, such as an F or t distribution.  Instead, they rely on the 

generation of an empirical null distribution derived from resampling the original data to calculate 

a p-value.  These tests consist of three basic steps: 

1. Use a dataset to calculate a test statistic 

2. Randomize the dataset s times, calculating the same test statistic from each randomized 

dataset – these s test statistics form the null distribution 

3. Calculate the p-value by compaing the actual test statistic to the null distribution 

 

Randomization and permutation tests work exactly the same way, but a permutation test samples 

all possible permutations of the data, while a randomization test samples only a subset of the 

possible permutations.  A permutation test allows for the estimation of the most precise p-value, 

but is impractical when the dataset is large and there are a very large number of possible 

permutations.  The more permutations that one samples, the more precisely the p-value can be 

estimated.  In a randomization/permutation test, the p-value is calculated as the number of null 

test statistics that are more extreme than the empirical test statistic, divided by the number of 

permutations, s.  If you are conducting a two-tailed test, then this p-value should be multiplied by 

two.  You can determine the precision with which the p-value is estimated by pretending that 

there is only one null test statistic greater than the empirical test-statistic, and considering how p 

changes as you manipulate s.  Do this for the following number of permutations.  Pretend you 

are doing a one-tailed test. 

s 10 20 100 1,000 10,000 

pmin      
 

2. The Mantel Test 
The Mantel test is a special type of randomization test that is very useful because it allows one to 

test for an association between two matrices.  Typically, it is used to compare matrices that 

contain pairwise distance data, similarity data, or dissimilarity (similar to distance) data.  In all of 

these cases, the data matrix is square and symmetrical, and the diagonal does not contain useful 
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information.  This is because when an observation is compared to itself, it is identical to itself, 

and therefore, has a distance/dissimilarity of zero or a similarity of one. 

 

Testing for association between two matrices presents two problems: the data in the cells are not 

independent, and you are comparing two bivariate objects.  The randomization aspect of the 

approach deals with the non-independence of distances.  To deal with how to compare two 

bivariate objects, the Mantel test essentially straightens out the lower triangle of each matrix into 

a vector and then calculates the correlation coefficient between the two vectors.  This is the 

empirical test statistic.  One of the matrices is then permuted s times and a correlation is 

calculated for each random replicate to generate the null distribution. 

 

We will be analyzing a lizard locomotion dataset using the Mantel test.  The data are actually 

two datasets – one is a set of measurements of body and limb shape for sixteen species of lizard, 

and the other is a set of locomotor variables for the same species.  The morphological data 

include measurements of snout-vent length, body width and height, head length and width, and 

front and hind limb length.  The locomotor variables include maximal and average velocity, 

stride and step duration and length, the angle the body is bent during running, and angles of 

protraction and retraction of the hind limb.  One PCA was run on the morphological data, and a 

second was run on the locomotor data to reduce the datasets.  The data supplied to you include 

the species mean values for each of the first four PCs of each PCA.  You are interested in 

whether species differences in morphology are associated with species differences in locomotor 

variables.  One might expect this to be the case because one would expect differently 

proportioned species to move differently.  Below is a figure plotting morphological and 

kinematic PC-1s and PC-2s (from Bergmann and Irschick. 2010. Alternate pathways of body 

shape evolution translate into common patterns of locomotor evolution in two clades of lizards. 

Evolution 64: 1569-1582.).  Note that the points in the figure represent individuals, not species.  

Open squares are skink lizards, all other symbols are Phyrnosomatine lizards.  On the following 

page, there is a phylogeny showing the relationships of the species, with branch lengths.  Skinks 

belong to the genera Lerista and Ctenotus, and Phrynosomatines are everything else. 
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Ignore the phylogeny for now, but 

note that the skinks tend to have 

very elongate bodies, while the 

Phrynosomatines tend to be much 

stockier. 

 

Download the dataset, open it in 

Excel, examine it, and save it as a 

text file.  Then import it into R, 

saving it to an object named 

“PC_data”.  Note that in the 

current format, the data consist of 

four-dimensional coordinates (four 

PCs from each PCA) for species in 

morphospace and locomotor 

space.  To analyze them using a 

Mantel test, they need to be 

converted to distances.  You can 

do this using the following 

function: 

 
> dist(x, method=c("euclidean", "maximum", "manhattan", 

"binary"), diag=FALSE, upper=FALSE) 

 

In this function, x is a data frame of p variables for which you want to calculate p-dimensional 

distances, method specifies what type of distance you want to calculate, diag specifies whether 

or not to include the diagonal in the matrix, and upper specifies whether or not to include the 

upper triangle of the distance matrix.  The default is to include only the lower triangle, which is 

what is desired.  Use the dist function to calculate pairwise Euclidean distances among species 

based on the four morphological PCs and then on the four locomotor PCs.  Do this separately, 

assigning the resulting morphological distance matrix to an object “morph_dist”, and the 

locomotor distance matrix to an object “loco_dist”.  Examine the matrices.  How big are they 

(how many rows and columns)? 
 

 

 

Now you are ready to do a Mantel test for association of the two matrices.  You will need the 

package “vegan” to do the Mantel test.  Install it if you do not yet have it installed, and then 

load it.  Use the “mantel” function to do your test of matrix association: 
> mantel(xdist, ydist, method=c("pearson", "spearman", 

"kendall"), permutations=999, strata) 

 

Here, xdist and ydist are dis/similarity/distance matrices to be tested for association, method 

specifies the type of correlation to use, permutations is the number of randomizations of the 

dataset, and strata is optional and can include a factor that specifies groups within which 
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randomization is done.  Pearson is the typically used method, and it is the first matrix, xdist, that 

is randomized. 

 

What is the null hypothesis of the Mantel test you have conducted? 

 

 

 

 

Do the mantel test on your two distance matrices with 10, 100, 1000, 10000, and 100000 

permutations.  Provide the results in the table below.  How do the r and p values change with 

the number of permutations? 

Permutations r p 

10   

100   

1000   

10000   

100000   
 

How many permutations would you use if you could do the test only once?  Explain. 

 

 

 

What are your biological conclusions from the Mantel test that you did? 
 

 

 

 

 

 

3. The Partial Mantel Test 
The partial Mantel test is a useful extension of the regular Mantel test that allows you to account 

for a confounding dis/similarity/distance matrix.  It tests for an association between two such 

matrices while taking the effects of a third matrix into account.  The third matrix is a nuisance 

variable, but note that it must also be in the form of a matrix of the same size as the other two 

matrices.  Like the regular Mantel test, the general approach can be explained as straightening all 

three matrices, X, Y, and Z, into vectors, doing a regression between vectored matrices Y and Z, 

and then doing a Mantel test on matrix X and the matrix of residuals from the YZ regression. 

 

In the lizard body shape and locomotion data, an important nuisance variable is the evolutionary 

relationships among the species.  The species have known evolutionary relationships, shown 

using the phylogeny above, and it is important to take these into account.  The species can also 

be divided into two major clades that are only distantly related: the Scincidae (including Lerista 

and Ctenotus), and the Phrynosomatinae (including everything else).  You already have your 

morphology and locomotion distance matrices.  What you need now is a phylogenetic distance 

matrix.  We will do this in two different ways to help show you different approaches to making 
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such matrices.  The first approach is to simply consider the two main clades (Scincidae and 

Phrynosomatinae).  If two species belong to the same clade, they get a zero, if they belong to 

different clades, they get a one.  Why is this not the best approach to incorporating the 

evolutionary relationships among species into the analysis? 
 

 

 

 

 

Briefly describe one other scenario in which making a matrix of zeros and ones for use in a 

partial Mantel test would be useful (i.e., phylogenetic relationships shouldn’t be part of your 

scenario). 
 

 

 

 

 

  

The second approach, which more fully uses the phylogenetic information available to you, is to 

sum the branch lengths connecting each pair of species to one another.  The branch lengths are 

listed on the phylogeny and are measures of dissimilarity.  For example, the phylogenetic 

distance between Sceloporus virgatus and Phrynosoma modestum on the phylogeny above is: 

1+1+1+4+2+2+3=14. 

 

Assignment: (2 points) 

In the matrix below, and only for the species in the dashed box on the phylogeny, put the 

same/different clade (0/1) distances in the upper triangle, and the actual phylogenetic 

distances in the lower triangle. 
 L.varia L.eleg. L.macro. Ctenotus Uta S.virg. S.jarr. S.mag. 

L.varia         
L.eleg.         
L.macro.         
Ctenotus         
Uta         
S.virg.         
S.jarr.         
S.mag.         
 

Note that when producing a matrix like this the rownames and column names have to match 

those in your other matrices exactly.  Download the Excel spreadsheet that contains both the 

same/different clade and phylogenetic distance matrix, and save each as a tab-delimited text 

file.  Import them in R as objects "sd_dist" and "phylo_dist".  View the matrices to ensure 

that they are imported correctly.  Notice that both triangles are filled in and the diagonal is 

composed of zeros.  Producing such a matrix is made easier if you notice that (1) the 
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phylogenetic distance is always twice the distance from one of the species to the common 

ancestor, and (2) the phylogenetic distance from any species in one clade to any species in a 

second clade will be the same.  Finally, the reason that the hand-made distance matrices do not 

precisely match those produced by the dist function is because those produced by dist are 

objects of class dist, while the ones you are making in Excel are being imported as objects of 

class data.frame.  A data frame class object cannot handle a lower triangle matrix – leading to an 

error stating that the first line does not have the right number of entries. 

 

The following function can be used to do a partial Mantel test: 
> mantel.partial(xdist, ydist, zdist, method=”pearson”, 

permutations=999, strata) 

 

The function is almost the same as the mantel function, but has an added argument, zdist.  Note 

that residuals are calculated from a regression run on ydist and zdist, so it makes the most sense 

to use zdist as the nuisance matrix, and ydist as the matrix most likely to be influenced by it.  In 

our example, morphology tends to have a stronger phylogenetic influence than locomotion, so 

xdist should refer to the loco_dist object. 

 

Assignment: (3 points) 

Conduct a partial Mantel test on the morphology and locomotion distances with sd_dist as the 

nuisance matrix.  Then repeat with phylo_dist as the nuisance matrix.  Do both analyses with 

10,000 permutations of the data.  Report the statistical results for both tests below.  Do the 

conclusions differ?  What is your biological interpretation of these analysis results? 

 

 

 

 

 

 

 

 

 

 

Thinking more generally, what could doing both tests (with phylogenetic distance represented 

in the two different ways) tell you about how phylogeny influences an association between 

body shape and locomotion? 
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4. Randomization Two-Factor ANOVA 
Although we started off learning the Mantel test, randomization is a general approach that can be 

applied to virtually any test available.  For example, one could do a randomization two-sample t-

test, ANOVA, Shapiro-Wilks test, or any other test that you might want to use.  The strength of 

the randomization approach is that it relaxes test assumptions about distribution.  This is because 

you no longer base your conclusions on a standard test distribution, but instead create a null 

distribution that is unique to your dataset. 

 

Consider this with a hypothetical example.  You need to do a single-factor ANOVA, but you find 

that both your response variable and the residuals are not normally distributed.  Your Shapiro-

Wilks test for normality returns a highly significant p-value (say, p=0.0000001), so the 

assumption of normality is strongly violated.  What are your options in this case?  You could 

ignore your test of normality and do the ANOVA anyway, but any conclusion that you come to 

with this approach would be highly suspect and it is strictly incorrect.  You could do a Kruskal-

Wallis test instead – the non-parametric version of the single-factor ANOVA.  This is a perfectly 

fine alternative, but has the disadvantage of not being very powerful (your response variable gets 

transformed into a rank variable, so you lose a lot of information).  You could also do a 

randomization ANOVA.  This combines the power of a regular ANOVA with relaxed 

distributional assumptions, like a Kruskal-Wallis test.  In many ways, a randomization test is a 

great way to go because it always is a custom test for your particular dataset.  The costs are that 

it needs to be implemented (many software packages do not do it), and doing a lot of 

randomizations and repeating the analysis for each one takes computational time (as you saw 

with the Mantel test done with 100,000 permutations).  With fast computers, the computational 

time is not much of an issue (does it matter that it takes 10s instead of 0.01s to do the analysis?).  

This leaves implementation.  Dr. Bergmann has implemented a randomization fully crossed two-

factor ANOVA as an R function, which is what we will be using today, but keep in mind that 

any test that we have done this semester could be done using a randomization approach.  For this 

reason, we will also take a look at the code for Dr. Bergmann’s function. 

 

Download the text file “randomized_twofactor_anova.txt”.  Then load it into R using the 

“File>Source R code…” menu item.  The function name is “twofac_anova”, and it should 

appear in your list of objects in the R workspace.  Type in the function name in R (or open the 

text file) to view the code. 

 

Note that the code is documented: any line that starts with “#” is a documentation line that 

describes what the code beneath it does.  It is wise to document code that you write so that 

anyone using it knows how it works.  This can be useful to you as well, if you revisit some 

function that you wrote a year or two ago. 
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The documentation for some lines has been replaced with “AA”, “BB”, and “CC”.  What do 

the four lines under “# AA” do? 

 

 

 

 

 

What do the five lines under “# BB” do? 

 

 

 

 

 

 

What do the four lines under “# CC” do? 
 

 

 

 

 

 

We will do a randomization two-factor ANOVA on the mosquito dataset that we analyzed in 

lab 3 (the ANOVA lab).  Take the following steps: 

1. Import the lab 3 mosquito dataset into R. 

2. Do a two-factor ANOVA on hatch rate, with larval density and larval species as two 

fixed factors.  Be sure to include the interaction term.  Use the “aov” function and 

assign the output of aov (not summary(aov()) to an object. 

3. Use a Shapiro-Wilks test on the response variable to test for normality. 

4. Do another Shapiro-Wilks test to test for normality of the residuals. 

 

What are the results of the Shapiro-Wilks tests?  Complete the table below and give a verbal 

conclusion. 

Variable W p 

Hatch Rate   

Residuals   
 

 

Assignment: (5 points) 

Continue the analysis by taking the summary of your aov object to get an ANOVA table.  Then 

use the “twofac_anova” function to do the randomization anova.  Do 10,000 randomizations.  

What did you type to use the “twofac_anova” function? 
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Explain why the F-statistics for the regular two-factor ANOVA and the randomization 

ANOVA are identical (the df, SS, and MS are also identical, so are not shown in the 

randomization output)? 
 

 

 

 

 

Complete the table below, providing results for both the regular ANOVA and the 

randomization ANOVA. 

Effect df MS F pANOVA prand(ANOVA) 

Density      

Larva      

Density:Larva      

Residual      
 

Do your conclusions change from doing the randomization ANOVA (compared to the regular 

ANOVA)? 

 

 

 

 

What are your biological conclusions from this analysis? 
 

 

 

 

 

 


