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Biol 206/306 – Advanced Biostatistics 

Lab 7 – Principal Component Analysis 

Fall 2016 
 

By Philip J. Bergmann 
 

 

0. Laboratory Objectives 
1. Learn what sort of data can be analyzed using Principal Component Analysis (PCA) 

2. Learn how PCA works: procedure, assumptions, results 

3. Learn how PCA differs from DFA 

4. Learn how to do PCA in R 

 

 

1. Principal Component Analysis 
We continue with multivariate statistics by studying principal component analysis (PCA).  In 

many ways, PCA is very similar to MANOVA/DFA in that it repartitions the variance present in 

multiple response variables to produce a set of eigenvectors that describe how each original 

variable contributes to each new component.  It also allows for the calculation of factor scores 

for each individual sample, which then allows you to visualize how individuals are related in a 

simplified multivariate space. 

 

How PCA differs from DFA is in how it repartitions the variance.  DFA requires that you assign 

each individual to a group a priori, and then calculates eigenvectors so as to maximize the 

discriminatory power of the first discriminant function.  In contrast, PCA treats each individual 

equally, essentially making the a priori assumption that all individuals are sampled from the 

same population (this is not a formal assumption, and is readily violated in many applications of 

PCA).  In this framework, the first principal component (PC-1) is calculated so that it explains 

the greatest possible amount of variation in the dataset.  Interestingly and usefully, the PC-1 axis 

corresponds to the multivariate version of the reduced major axis or major axis (depending on 

approach) of the data, relating the technique to model II regression.  Subsequent PCs are then 

orthogonal (independent) to all other PCs.  If there are p response variables, then there are p PCs 

that explain ever-decreasing amounts of variance, and so only the first few are interpreted. 

 

PCA has a number of important applications.  First, it is viewed as an exploratory technique that 

can help the investigator determine how response variables are related to one another.  What this 

means is that there is no specific null hypothesis that is tested by PCA – the technique simply 

repartitions variance.  Second, PCA is used as a data reduction technique.  Since variance is 

repartitioned so that most of the variance present in p response variables is explained by only a 

few PCs, you can go from trying to make sense of a dozen or even more variables to trying to 

interpret a few (often one to four) PCs.  This makes data handling and visualization much easier.  

Third, the variables produced by PCA are orthogonal, having a correlation of ~0 with one 

another.  The implication of this is that PCA can be used to deal with multicollinearity.  PCA is a 

great technique, but one limitation is that each PC is an amalgam of all of the original variables, 

and so interpretation of just what PC-1 or PC-2 means can be difficult.  One may also wonder 

what the point of PCA is if it doesn’t test any hypothesis.  This may be a strength of the 
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technique because once you have the PCs defined and factor scores calculated, you can do tests 

on the factor scores (e.g., test for sexual dimorphism in factor scores using a t-test). 

 

PCA comes in several flavors.  While a MANOVA/DFA is done on the matrix of sums of 

squares and cross products (SSCP) of the original data, PCA can either be done on the 

correlation matrix or the covariance matrix for the original variables.  Using the covariance 

matrix yields a PC-1 that is equivalent to the multivariate version of a major axis regression.  The 

covariance matrix does not standardize for the magnitude of the original variables, and so is 

typically used when all of your variables have similar amounts of error associated with them, and 

are measured in the same units (e.g., skull measurements all taken in millimeters).  The 

correlation matrix yields a PC-1 that is equivalent to the reduced major axis of the data, 

standardizes the data because correlations are being studied, and so is appropriate when the 

original variables have different amounts of error associated with them, often when taken in 

different units (e.g., some variables are in seconds, others in Hz). 

 

Finally, PCA makes several assumptions, just like all statistical techniques.  First, the data should 

be randomly sampled.  As always, this is best ensured by designing your study properly.  

Second, the data are assumed to follow a multivariate normal distribution (mnd).  As with DFA, 

the technique is robust to violations of this assumption, which cannot be easily tested.  Whether 

individual variables are normally distributed has little bearing on whether the data together 

follow mnd, and this approach can be downright misleading.  Third, PCA assumes that the 

variables are linearly related.  This can be tested simply by plotting your variables in a pairwise 

manner.  A log-transformation is often applied (especially with morphometric datasets) to the 

data to improve linearity.  Often some of the variables are not correlated and so it can be hard to 

evaluate linearity.  In all honesty, this assumption is rarely tested, and the most important issue is 

that variables are not related in a highly non-linear manner (e.g., a tight but curved relationship).  

Related to the assumption of linearity, PCA deals poorly with situations where there are zeros in 

the dataset.  When this is the case, it is best to use a transformation of some sort that eliminates 

the zeros, which distort the factor space.  Finally, it is important to note that PCA does not make 

the assumption that variables are uncorrelated, something that DFA does.  In fact, PCA is often 

used with highly multicollinear data. 

 

List as many ways in which PCA and DFA differ as you can. 
 

 

 

 

 

 

 

 

 

 

 

 

 



Lab 7: PCA – Page 3 

 

2. Doing PCA in R 
The dataset that we will be analyzing using PCA is one that has taken measurements of male bird 

songs.  The dataset was generated in the lab of Dr. M.R. Lein, at the University of Calgary, and 

consists of about ten individual “Fitz-Bew” calls from each of thirteen male Willow Flycatchers 

(Empidonax traillii) from a population in the Canadian Rockies.  The Willow Flycatcher is 

morphologically very similar to other sympatric species in the genus, and so the Fitz-Bew call is 

useful for identifying the species in the field.  Because there is variation in the call, it is possible 

that Willow Flycatchers can identify individuals by their call.  This is something we can evaluate 

using PCA. 

 
Above is a sonogram of a Fitz-Bew call with the variables in the dataset mapped out on it.  Some 

of the variables (T1 to T9) are temporal, representing the length of different parts of the song in 

seconds.  For example, T2 represents the length of the first syllable (Fitz), while T3 represents 

the length of the second syllable (Bew).  Variables F1 to F4 are frequency variables, measured in 

Hertz, with F1 and F4 being changes in frequency, and F2 and F3 being maximum and minimum 

frequency, respectively.  Many other variables would be possible – those chosen represent 

measurements that are obtainable from most songs and that are objectively repeatable.  If you are 

interested in what the call sounds like, a recording is available here: 

http://www.appliedbioacoustics.com/Repertoires/Passeriformes/Tyrannidae/Empidonaxtraillii/bir

d.html. 

 

Given the description of the dataset, would you do a PCA using a covariance matrix or a 

correlation matrix?  Justify your answer. 
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Start by downloading and viewing the dataset in Excel, saving it to a text file, and importing it 

into R as an object named “fb_data”.  Examine the structure of the imported data frame.  Note 

that the variable “male” is an integer instead of a factor.  You do not need this variable to do 

the PCA, but will need it later, represented as a factor.  Create an object called “maleID” that 

contains the “male” variable as a factor. 

 

Visualize the data by making pairwise plots of all variables.  You can do this at once with the 

following useful multivariate plot: 
> plot(fb_data[,3:15]) 

Do you notice any variables that obviously are related in a curved, non-linear manner?  Note 

that some may be correlated, and this is okay – you are only looking for blatant violations of 

linearity. 
 

 

 

 

 

 

 

 

Doing a principal component analysis is straightforward, but a lot can be done with the 

output.  Do a PCA on the 13 song variables using the following function, saving the resulting 

model in an object “fb_pca1”: 
> princomp(x, cor=FALSE, scores=TRUE, covmat=NULL) 
 

In this function, x is the dataset, consisting of all the variables to be analyzed; cor=F is a logical 

argument, where the default is a PCA done on a covariance matrix and cor=T indicates the use of 

a correlation matrix; scores=T tells the function whether or not to calculate factor scores; and 

covmat=NULL can be used to specify a user-supplied covariance matrix – this is if you would 

like to do the PCA done using a covariance matrix as input, as opposed to your raw variables. 

 

Do your PCA, choosing which method is appropriate for this dataset.  You can omit the 

“scores” and “covmat” arguments, leaving them as default.  You can get the PCA output 

using: 
> summary(pca_object, loadings=FALSE, cutoff=0.1) 

 

Here, “pca_object” is the output from the “princomp” function.  Loadings=F specifies whether 

the component loadings should be provided.  Although default is FALSE, you almost always 

want these, so should specify TRUE.  Finally, cutoff=0.1 specifies the value below which a 

component loading is not displayed in the table of loadings.  Try the summary function on your 

PCA object, specifying loadings=T and leaving cutoff=0.1.  Then repeat, also specifying 

cutoff=0.0001.  How does the output compare? 
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What other output are you given by the summary statement? 
 

 

 

 

This gives you most of the output that you need to interpret the PCA, but note that the 

eigenvectors (loadings) are not standardized.  You can standardize the component loadings by 

dividing each value by the square root of the eigenvalue.  You are given the square root of the 

eigenvalue as the “standard deviation” of each PC in the output.  We will not be standardizing 

loadings today, but we will be using eigenvalues (square of the standard deviation). The 

eigenvalues are also important because they can be used to calculate the proportion of variance 

explained by each component (as the quotient of the eigenvalue and the sum of all eigenvalues), 

and determine how many PCs to interpret.  Square the standard deviations in your output to get 

eigenvalues.  What are the first ten eigenvalues using a correlation matrix and the Fitz-Bew 

song data?  What can you type at the R prompt to get all of these at once? 

 

 PC-1 PC-2 PC-3 PC-4 PC-5 PC-6 PC-7 PC-8 PC-9 PC-10 

λ =           

 

 

 

There are a number of ways of deciding how many PCs to interpret, and this is a controversial 

topic.  One approach, if interpreting a PCA done on a correlation matrix is to consider any PC 

with an eigenvalue >1.  This does not work when a covariance matrix is used because its 

eigenvalues all tend to be <1.  Another approach is to consider all the PCs that together explain 

90% of total variance.  90% is a completely arbitrary number, with some people using 95% and 

others 80%, making this approach difficult to justify.  A third approach, probably the most used, 

is to view a screeplot and select the PCs that explain considerable variation.  A screeplot is a plot 

of eigenvalues against PC number.  You inspect the plot to see a sudden drop in eigenvalue from 

one PC to the next, and then interpret all PCs before the drop.  You can make a screeplot using 

the following function, which labels the y-axis as “variance”, which is equivalent to eigenvalue 

(you can confirm this for yourself): 
> screeplot(pca_object, type=c("barplot", "lines") 

 

How many PCs should you interpret with the Fitz-Bew dataset using each approach? 

Method: Eigenvalue > 1 90% cumulative variance Screeplot 

# PCs:    
  

 

 

Each component explains an independent component of variance in the original data and all 

original variables contribute in different proportions to each PC.  The component loadings tell 

you how the original variables contribute.  The higher the magnitude of a loading, the more that 

variable contributes.  Positive and negative signs show you how the variables are related.  If a 

loading is negative, then as the PC value increases, the value for the original variable in question 

decreases, and vice versa. 
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Try to interpret the first two PCs.  In the assignment section at the end of the lab, fill out the 

table with the loadings for the first three PCs. Add the eigenvalues and the percentage of 

variance explained by each.  The write the interpretation for the first two PCs to the right of 

the table.  To help you, consider only loadings >0.3 and identify these in bold. 
 

The next step in our PCA is to examine the factor scores.  The factor scores give us the 

coordinates of each sampling unit in PC space, and we can visualize this easily by plotting factor 

scores for pairs of PCs in a scatter plot.  What are the sampling units in the current dataset? 

 

 

 

You can obtain the scores quite easily from your estimated PCA object because they are already 

calculated.  Look at the structure of the fb_pca1 object.  What would you type to get the factor 

scores output to the screen? 
 

 

 

Create a data frame that contains your factor object “maleID” and all of the factor scores.  

Change the row names to match the song identifier.  Create a scatter plot of PC-1 against PC-

2 with the maleID color-coded.  Save the figure and insert it at the end of this lab, in the 

assignment section.  Are the males recognizable by their song characteristics?  How many 

males seem readily identifiable? 
 

 

 

 

 

 

3. Post hoc Analysis 
In the previous section, you completed a PCA of the Willow Flycatcher call data.  Part of the 

versatility of PCA is that it produces a set of new, independent variables, called principal 

components (PCs) that can then be further analyzed using your favorite statistical techniques.  

Analysis options are really just limited by creativity and molded by the biological questions you 

are interested in.  To demonstrate some of what can be done, we will do some post hoc analyses 

of the factor scores that you plotted in the last section. 

 

Two questions of biological importance come to mind.  First, are males distinguishable from one 

another based on call characteristics?  This question could be addressed just as easily with DFA, 

but the appeal of PCA is that it does not presuppose that males are different.  This question could 

be biologically quite interesting because if males are distinguishable by their call, then other 

males may recognize stronger males before engaging in an altercation, and females may be able 

to distinguish their mate from others.  Second, we may be interested in whether the calls that 

some males produce are more variable than songs of other males.  One could imagine a situation 

where having a consistent call is important, especially when one needs to be recognized by other 

individuals. 
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Assignment: (10 points) 

How would you test the two biological questions described above using your PCA and other 

statistical tests?  Be sure to mention what tests you would use (Hint: It may be a good idea to 

refer to past labs for ideas). 
 

 

 

 

 

 

Complete the table below to report your PCA results.  Identify loadings >0.3 with bold font, 

and include a written interpretation of PC-1 and PC-2 to the right of the table.  Insert your 

plot of factor scores for PC-1 and PC-2 below the table. 

 

Variable PC-1 PC-2 PC-3 

T1    

T2    

T3    

T4    

T5    

T6    

T7    

T8    

T9    

F1    

F2    

F3    

F4    
Eigenvalue    
% explained    
 

 

 

For all of the analyses in this section, consider the first two PCs.  Start by testing the first 

biological question using your chosen analysis.  Insert a table to report the results and write a 

sentence or two interpreting the results.  Make sure that you do a complete analysis and 

present the statistics necessary for a reader to fully interpret it.  When considering which 

males are different, a diagram or graphic may help.  Are there any males that are completely 

unique on the PC?  Give a biological conclusion. 
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Now do the analysis necessary to answer the second biological question.  Report the results 

and interpretation in the space provided. 
 

 

 

 

 

 

 

 

You can take a further look at how variances compare among males for the first two PCs by 

calculating the variances and plotting them.  Do the following steps, referring to past labs as 

needed: 

1. Use the tapply function to calculate variance for each male for PC-1 and PC-2, saving 

the results for each PC in a separate object. 

2. Note that you should get a vector with variances, with the maleID number as the 

“name” of each cell. 

3. Plot the variance against maleID and include the plots here.  Write a sentence or two 

describing your findings. 

 

 

 

 


