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Biol 206/306 – Advanced Biostatistics 

Lab 6 – Multivariate ANOVA and Discriminant Function Analysis 

Fall 2016 
 

By Philip J. Bergmann 
 
 

0. Laboratory Objectives 
1. Learn when it is appropriate to use Multivariate Analysis of Variance (MANOVA) 
2. Learn about the assumptions and interpretation of a MANOVA 
3. Learn how to do a MANOVA in R 
4. Learn about Discriminant Function Analysis (DFA) and when to use it. 
5. Learn to do a DFA in R 

 
 

1. Multivariate Analysis of Variance Background 
Today we start to explore multivariate statistics.  Multivariate techniques have multiple response 
variables, hence the name.  Multivariate Analysis of Variance (MANOVA) is the first such 
technique we will learn.  Consider the typical case of an ANOVA where you have one or more 
categorical explanatory variables with two or more treatment levels each.  However, you now 
also have multiple response variables that you wish to consider simultaneously instead of 
separately.  Instead of a null hypothesis that group means are not significantly different from one 
another, you are testing a null hypothesis that group centroids are not significantly different 
form one another.  Group centroids are simply multivariate means – means in two or more 
dimensions. 
 
MANOVA works by finding a linear combination of the multiple response variables that 
maximizes between group differences relative to within group differences, hence maximizing 
discriminating power between the groups.  To do this, MANOVA takes the variation present in 
all of the response variables and identifies the axis of the multivariate data with the most between 
group variation.  This is termed the first discriminant function (DF-1).  Subsequent DFs are 
independent of the first and one another.  Each DF has a linear model associated with it that 
gives weights of how strongly each original response variable contributes to the DF, as follows: 
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where zik is the discriminant function value for individual i and DF k, a is an intercept, just like in 
linear regression, cp is the weight of the pth variable on the DF, and yip is the value of the pth 
variable for individual i.  In this context, you get a value, zik, for each individual in discriminant 
space, called a factor score.  The cp values for each DF are called loadings.  The loadings on 
DF-1 tell you how useful each original variable is to discriminating between your 
groups/treatments. 
 
A MANOVA produces DFs, but really is simply a test of whether there are significant 
differences between group centroids.  It calculates a number of statistics to test this hypothesis, 
including the Pillai Trace, which is viewed as most robust, and Wilk’s Lambda, which is the 
most popularly implemented in statistical software.  Since these values do not have test 
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distributions, they are converted to F-statistics, with typical significance tests then applied (we 
will not go into how this is done – R will do the conversion automatically). 
 
The assumptions of MANOVA are multivariate normality of the data, multivariate 
homoscedasticity, no multicollinearity, and that there are no multivariate outliers.  Unfortunately, 
multivariate normality and homoscedasticity are difficult to test, and testing one variable at a 
time tells you nothing of whether the assumptions are met from a multivariate perspective.  
Fortunately, MANOVA is robust to violations of these assumptions.  We have used correlation 
analysis to test for multicollinearity in past labs.  Multivariate outliers can be evaluated by 
calculating Mahalanobis distances of the points, which is essentially the distance from the 
multivariate origin in DF space. 
 

What is meant by “homoscedasticity”? 

 

 

 

 

What is meant by “multicollinearity”? 
 
 
 
 
The linear model weights for a given DF, or loadings, together form the eigenvector for the data.  
each DF has an eigenvector, which is simply the values c1 – cp.  Each eigenvector is related to 
the original data by a number called the eigenvalue, represented by λ.  The eigenvalue is useful 
because the eigenvalue for a given DF, divided by the sum of all eigenvalues for all the DFs is 
equal to the proportion of total dataset variance explained by each DF. 
 

2. Discriminant Function Analysis Background 
Discriminant Function Analysis (DFA), also called Linear Discriminant analysis (LDA), is 
simply an extension of MANOVA, and so we deal with the background of both techniques first.  
This is also done because different software packages provide different amounts of the results 
along with their MANOVA output or their DFA output.  For example, in R, MANOVA gives 
you only the test of significant differences between group centroids.  All other output 
(eigenvectors, eigenvalues, factor scores) are provided with the DFA/LDA output. 
 
In considering DFA, it does exactly the same thing as described above for the MANOVA, but 
provides all of the remaining output.  This allows you to determine not only which variables are 
best at discriminating groups, but also which groups are different and which are not.  One useful 
tool to help you do this is classification.  DFA uses the discriminant functions to determine 
which group it would assign each individual in your dataset to.  It does this using a cross-
validation technique called jackknifing, where the DFs are calculated while excluding one 
individual from the dataset and then using the DFs to classify that individual to a group.  This is 
repeated with all individuals in the dataset, and you keep track of which classifications are done 
correctly and incorrectly.  When complete, the analysis returns the proportion of correctly 
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classified individuals to each group.  Groups with a high rate of correct classifications are easy to 
discriminate, while those with lower rates are more difficult. 
 

3. Doing a MANOVA in R 
MANOVA is implemented as a function in the 
“stats” package in R, which is automatically loaded 
when you open R.  DFA is implemented as a 
function (called lda, or linear discriminant analysis – 
the alternate name for DFA) in the “MASS” 
package, which comes automatically installed with 
R, but not loaded.  Load the MASS package in R. 
 
The dataset we will be using to learn how to do 
MANOVA and DFA in R is a little more complex 
than most of our previous datasets and requires some 
explanation.  The dataset quantifies the three-
dimensional skull shape of the common mouse, Mus 

musculus, and includes data for this for wild mice, 
wildtype laboratory strain mice, and various 
laboratory mice that have mutations that affect head 
shape.  The table below (modified from Jamniczky 

and Hallgrimsson. 2009. A comparison of 

covariance structure in wild and laboratory muroid 

crania. Evolution 63: 1540-1556.) provides you with 
the strains, genotype, and a description of each 

strain.  It also assigns strains to Lab (wildtype), Mutant, and Wild. 

Category Strain Genotype Description 

Lab AWS Wildtype Normal skull, but some have spontaneous cleft lip 

Lab CBA Wildtype Normal skull 

Lab DBA Wildtype Normal skull 

Lab FVB Wildtype Normal skull 

Mutant Crf4 Crf4/Crf4 Reduced size of the face 

Mutant LTL Ghrhr-/Ghrhr- Small size mice due to prolactin deficiency 

Mutant Mceph Mceph/Mceph 25-30% larger brain than normal 

Mutant Nipbl Nipbl(+/-) Reduced cranial size and alteration of face shape 

Mutant PTN Cre (fl/fl) Increased length of both face and base of the skull 

Wild Mus Wildtype Normal skull 

 
The data include twenty-four variables that quantify skull shape, derived from a geometric 
morphometric analysis.  Such an analysis involves digitizing landmarks on an object (a skull) to 
get 3-D coordinates (see figure for landmarks used in this study, shown from a ventral view of 
the skull – also from Jamniczky & Hallgrimsson, 2009).  These coordinates are then transformed 
into what are called “partial warp scores” through some complex mathematics.  So, your dataset 
contains unique individual identifiers for each of 239 mice, identifies each as lab, mutant, or 
wild, identifies the strain or mutation that each belongs to, and 24 derived variables that together 
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quantify skull shape.  We are interested in whether these various categories and strains of mice 
can be distinguished simply based on cranial shape. 
 
The dataset is already in tab-delimited text form.  Download the dataset and import it into R, as 

object “mus_data”. Examine the dataset using the str() and summary() functions.  If we start 

by doing a MANOVA, the syntax is as follows: 

> manova(Y~M) 

 
Where Y is a matrix of the response variables, and M is a model of categorical variables.  Note 
that Y must be a matrix and not a data frame, so if you just specify the columns containing your 
skull shape characters from their data frame, you will get an error. 
 

Make a new object, called “mus_shape”, that is a matrix containing just the skull shape 

variables listed in the “mus_data” data frame.  You can use the function “as.matrix()” to do 

this, referring to the appropriate columns using the square bracket reference system.  Then 

use str() to ensure that you got what you wanted.  Next, fit the manova model, using 

“mus_shape” as the response variables, and the variable “Category” is the factor, saving the 

model as “mus_manova1”.  Take a look at the new object by typing its name. 

 

Next, it is time to get the summary of your model that will test the null hypothesis.  Do this as 

follows, specifying the Pillai Trace, which is the most robust test statistic, and save the results 

to an object: 

> summary(manova_object, test=c(“Pillai”, ”Wilks”, “Hotelling-Lawley”, “Roy”)) 

 

What is your null hypothesis for this MANOVA? 

 

 

 

The analysis uses the Pillai statistic, but then converts it to an F-statistic, which is used to 
conduct the test, because the distribution of F is known, but that of the Pillai Trace is not.  The 
degrees of freedom are calculated as: 

dfnumerator = (# of response variables)*(factor df) 
dfdenominator = (total df)*(factor df)-(dfnumerator) 

What do you conclude from the analysis? 
 
 
 
 
The nice thing about MANOVA (but not DFA) is that you can also use more complicated 
models, with multiple factors.  In the mouse skull shape dataset you have two factors.  What are 

these two factors?  Describe the study design based on how these factors relate to one another.  

(Hint: What sort of design do you get from considering both Category and Strain in one 

analysis?) 
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Implement your more complicated MANOVA, including both Category and Strain as factors 

(related correctly), save the fitted model as an object, and then get the summary table with the 

Pillai Trace and associated F-test.  Complete the table below – more rows are included than 

you might need. 

Effect df Pillai Fapprox dfnum dfden P 

       

       

       

       
 

What are the null hypotheses being tested by the above analysis? 

 

 

 

What do you conclude, biologically from your analysis? 
 
 
 
 
 

4. Doing a DFA in R 
Now that you have done a MANOVA and have a significant result, the most pressing question is 
what to do next.  You have multiple groups and multiple variables and you know there is a 
difference.  Questions of interest now, are which variables are best at discriminating groups and 
which groups are different from which other groups (and how different are they)? 
 
The manova function allows one way of doing this, advocated by some in the literature: doing 
an ANOVA on each response variable in turn with the same factors as in your MANOVA.  This 
will allow you to see which of the variables differ significantly among groups, but it reduces the 
analysis from multivariate to univariate – you lose the information from considering all the 
response variables together.  Nevertheless, we will do this to see how it works.  Try the 
following function on your second MANOVA model and save the output to a new object: 

> summary.aov(manova_object) 

 

View the resulting object.  What does it give you?  What would you conclude from this 

analysis? 

 
 
 
 
 
A multivariate approach to discovering which groups differ and which variables are most 
important at discrimination is DFA (also called LDA).  What do each of these acronyms stand 

for? 
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Start by doing a DFA on mus_shape with Category as the grouping variables, using the 

following function, and save the output to an object, mus_dfa1: 

> lda(X~Y, CV=F) 
 
In this function, X is your grouping variable, Y is your matrix of response variables, and CV 
refers to cross-validation.  When CV=FALSE, you get the important parts of a DFA.  The output 
includes (in order) the prior probabilities of the groups, which is the proportion of individuals 
belonging to each group; the mean value of each response variable for each group; the 
eigenvectors for the DFs; and the “proportion of trace”, which are the eigenvalues for each DF 
expressed as a proportion of the sum of eigenvalues (which is called a trace). 
 

In general, what information do the eigenvectors give you?  What about the eigenvalues? 

 

 

 

 

 

For the DFA you just did, what percentage of the variance is explained by DF-1 (called LD1 

in R)? 

 

 

 

For the DFA that you just did, what are the five most important response variables for 

discriminating wild, lab, and mutant mice?  List them in order from most important to least. 
 
 
 
 
When you repeat the DFA/LDA with CV=T, you get completely different, but still useful, 
output.  Do this analysis as well and save it as a new object.  The output is a list.  Component 
$class is a factor that lists what group each individual would be classified to using the DFA with 
a jackknifing approach.  Component $posterior is the probability that each individual belongs to 
each group.  If you look at the first individual, it has a 0.72 probability of being a wildtype lab 
mouse, 0.275 probability of being a mutant, and virtually no chance of being a wild mouse.  This 
result would mean that the first individual would be classified to wildtype lab.  If you look at the 
first entry in the $class vector, you see that this is the case.  We will use this output to calculate 
how frequently individuals are correctly classified to each group.  If your DFA with CV=T is 
stored in object mus_dfa1a, then try the following (otherwise change the name of the object): 

> mus_dfa1a_table <- table(mus_data$Category,mus_dfa1a$class) 
View the object.  It compares what each individual is classified as by the DFA to what group the 
individual actually belongs.  The rows represent the group to which individuals actually belong. 

How many individuals that belong to the Lab group are correctly and incorrectly classified? 
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You can turn this table into proportion of successful classification using the following code: 

> diag(prop.table(mus_dfa1a_table,1)) 

 

Do this and bind the resulting vector as a column to the table you just made using cbind.  

Reproduce the table below. 

 Lab Mutant Wild Prop 

Lab     

Mutant     

Wild     
 

You can also calculate the overall proportion of correct classifications with the following line.  

Put this number beside the table above. 

> sum(diag(prop.table(mus_dfa1a_table))) 

 
What remains to be done is extracting the factor scores from the DFA.  These give you the value 
for each DF that each individual has, and allows you to plot the individuals in a discriminant 
function space.  This may be useful because it shows you which individuals may look most alike 
in a multivariate sense.  It also allows you to check for outliers by calculating the Mahalanobis 
distance (distance from the multivariate origin) for each individual, a key assumption of DFA. 
 

R allows you to plot factor scores very easily: 

> plot(mus_dfa1) 

 

Which of the three groups are most similar to one another? 
 
 
 
However, this approach doesn’t give you the actual factor score values. 

Save the following line, which extracts the factor scores as a new object, scores1: 

> predict(mus_dfa1)$x 
 
The predict function actually returns a list that contains the same thing as a DFA with CV=T, 
but includes the factor scores as well, saved as item $x. 

Plot your new object to confirm that it is gives you what you expect. 
 
It is now time to check for outliers. 

First calculate the Mahalanobis distance for each point using the following function: 
> mahalanobis(x, center, cov) 
 
Where x is your data, the object containing factor scores.  center is a vector of length p 
identifying the origin, where p is the number of dimensions in the dataset (this is the number of 
columns in your factor score object).  Since the factor scores for DF1 and DF2 are each centered 
around zero, you can substitute c(0,0) for center.  Finally, cov is a p x p variance-covariance 
matrix relating your DFs.  You can simply substitute the function cov(x), where, again, x is the 



Lab 6: MANOVA – Page 8 
 

object in which you stored your factor scores.  The output to the mahalanobis distance function is 
a vector of distances from origin for each individual in your dataset. 
 

Try doing this now, storing the Mahalanobis distances as a new object.  Then make a box plot 

of the distances.  Does it look like there are any outliers?  How many?  Since DFA is sensitive 

to multivariate outliers, if this analysis were for publication, it would be advisable to remove 

the outliers or deal with them in some way and redo the analysis.  Don’t worry about doing 

this here. 
 
 
 
 

Assignment (10 points): MANOVA and DFA – brining it all together 
Although MANOVA can handle complex designs that include interactions and nesting, DFA 
cannot.  The mouse skull shape dataset includes not only the general category that each mouse 
strain belongs to, but also the strain that each individual belongs to.  You have done a MANOVA 
already that takes both Strain and Category into account, and hopefully found that both factors 
are highly significant. 
 

Do a MANOVA that includes only Strain as a factor, and then do a DFA with Strain as the 

grouping variable.  Report your MANOVA and DFA results below, using tables and figures as 

needed.  With an analysis like this, you get a lot of output and it is generally inappropriate to 

present all of it.  For an analysis like this, it is sufficient to present the MANOVA test results, 

make a statement about how much variation each of the first two or three DFs explain, and 

mention what some of the most important variables are for differentiating groups. Then what 

you present depends on what you are trying to show.  Often, researchers show a plot of the 

scores for the first two DFs, coded by group, and/or a classification matrix.  Do both here.  

Use this paragraph to guide your presentation of the results.  Also include a paragraph that 

reports the results and includes an interpretation of the results.  Do not bother doing the 

individual ANOVAs for each skull shape variables (they aren’t a good way of getting a handle 

on what is going on.  A general tip is to present the results needed based on what you are 

testing, not all of the results available to you. 
 
 
 
 
 
 
 
 
 
 
 
 


