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Biol 206/306 – Advanced Biostatistics 

Lab 5 – Multiple Regression and Analysis of Covariance 

Fall 2016 
 

By Philip J. Bergmann 
 

 

0. Laboratory Objectives 
1. Extend your knowledge of bivariate OLS regression to multiple regression 

2. Learn how to do multiple regression in R 

3. Learn how to do backward stepwise elimination 

4. Learn about the different ways of doing an Analysis of Covariance (ANCOVA) 

5. Learn how to do an ANCOVA with a continuous covariate in R 

6. Learn how to do an ANCOVA with a categorical nuisance variable in R 

 

 

1. The Multiple Regression Approach 
Multiple regression is used to estimate the relationship of multiple independent or explanatory 

variables to a single response variable.  Because there is only a single response variable, multiple 

regression is not generally considered a multivariate technique, but this does not negate its 

usefulness.  Most often, all variables in a multiple regression are continuous, although we will 

see exceptions to this later in the lab in the case of ANCOVA.  Multiple regression is simply a 

generalization of bivariate OLS regression, as can be seen from its linear model (presented for 

the two explanatory variable case): 

�� = � + ����� + �	��	 + �
�����	 + �� 
 

Where yi is the ith observation for your response variable, xij is the ith observation for the jth 

explanatory variable, βk is the partial regression coefficient for each term, and εi is the ith 

residual. 

 

The partial regression coefficients are similar to the slope of a bivariate regression, but not 

exactly so, because they take into account the coefficients of the other terms in the model (hence 

the “partial”).  This is generally considered a strength of the approach because you can tease 

apart the effects of different explanatory variables and their interactions.  There are, however, 

disadvantages to them as well because they cannot be estimated with accuracy if your 

explanatory variables are highly correlated with one another.  This is termed “multicollinearity”, 

and is assumed not to be present in a multiple regression.  Fortunately, it is an easy assumption to 

test (although sometimes not as easy to remedy). 

 

This brings us to the assumptions of multiple regression.  Most are the same as for the bivariate 

case: data are random and independent, residuals are normally distributed, and the explanatory 

variables are measured without error.  From our discussions of model I and model II regression, 

we can say that “without error” is in practice more of a loose requirement – the explanatory 

variables should be measured with substantially less error than the response variable (a rule of 

thumb that is often used is one third the error or less).  Unfortunately, there is no implementation 
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of a model II multiple regression, and therefore, if this assumption is violated, there is not much 

that can be done about it – people pretty much ignore this assumption for multiple regression. 

Multiple regression also assumes that all important and no unimportant explanatory variables are 

included in the model.  This can be difficult to ascertain.  You should have a good reason for 

including each of your explanatory variables.  Finally, multiple regression assumes that the 

explanatory variables do not have multicollinearity.  You can evaluate this by calculating 

pairwise correlations among explanatory variables prior to your multiple regression, or by 

looking at tolerance values for each explanatory variable.  Tolerance is a measure of how much 

independent variation there is in each variable, given a set of variables.  Therefore, tolerance is 

affected by which explanatory variables are included in an analysis.  The higher the tolerance, 

the more independent a variable is from the others in the set.  Another rule of thumb is that a 

variable with a tolerance of less than 0.1 is highly correlated with others in the set and could 

confound the analysis.  Simply put, variables with low tolerances need to be excluded from 

analysis, or else the partial regression coefficients become meaningless and unstable.  If you 

cannot remove problem variables for some reason, then you have a problem and should try to 

figure out another way of analyzing the data.  We will talk about one approach later in the 

semester (hierarchical partitioning). 

 

2. Multiple Regression in R 
You will use multiple regression to study how the characteristics of isolated patches of forest in 

Victoria, Australia influence forest bird abundance.  The dataset was published by Loyn in 1987 

(Effects of patch area and habitat on bird abundances, species numbers and tree health in 

fragmented Victorian forests.  In: Nature Conservation: The Role of Remnants of Native 

Vegetation, Saunders et al. eds., pp. 65-77, Surrey Beatty & Sons, Chipping Norton, NSW, 

Australia).  The dataset contains the following variables for 56 patches of forest: 

• Bird abundance (individuals per hectare) 

• Patch area (hectares) 

• Year that the patch was isolated from nearby forest 

• Distance to the nearest patch (km) 

• Grazing intensity of the patch (on a scale of 1-5, 1 being light and 5 being heavy) 

• Altitude of the patch above sea level (m) 

Distance to nearest patch and patch area were not normally distributed, and so have also been 

log-transformed for your convenience (Ldist, and Larea).  Download, convert, and load the 

dataset into R, as object “bdata”.  Then attach it for ease of reference and take a look at it by 

having it printed to screen and also using the str() function.  Also load the package “car”. 
 

What is the response variable and what are the explanatory variables in this example? 
 

 

 

 

 

 

How many explanatory variables are there? 
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If you used a completely crossed model, including all possible interactions among your 

explanatory variables, how many terms would there be in the model (not counting intercept)? 
 

 

 

 

 

 

 

 

When there are many explanatory variables, it becomes both impractical and uninteresting to 

include all possible interactions (how would you interpret a significant interaction among four 

main effects?).  An alternative approach is to either include only interactions that you find 

compelling from a biological standpoint, or just include the main effects (no interactions).  In R, 

a model without interactions must first be fit if one wants to calculate the tolerances of the 

explanatory variables. 

 

Test for multicollinearity in two ways: first calculate all pairwise Pearson correlations among 

the explanatory variables (use the cor(x) function).  Record your results in the table below 

(place the variable names in the top row and first column, leaving cell [1,1] blank. 

 

      

 1.0     

  1.0    

   1.0   

    1.0  

     1.0 
What do they tell you?  Which variables are highly correlated with one another? 
 

 

 

 

 

 

 

Second, calculate tolerance values for the explanatory variables.  This is a two step process: a 

linear model must be fit to the data and then tolerances extracted and calculated.  The car 

package allows extraction of “Variance Inflation Factors” (VIFs), which are the inverse of 

tolerance.  Tolerance is more useful than VIF because it ranges from zero to one and is what is 

provided in most statistical software.  Fit a model using the lm(formula) function, where the 

formula does not include interactions (use ‘+’ symbols between the explanatory variables), 

and save the output to an object called “bird_reg1”.  Now use the vif function to calculate 

tolerance for your explanatory variables as follows: 
> bird_tol <- 1/vif(bird_reg1) 
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Take a look at the output.  How do your conclusions from looking at the tolerances compare 

to those from looking at the correlations?  The tolerance data tends to be more informative in 

this situation because it takes into account the set of variables you are studying, which the 

correlation analysis does not. 

 

 

 

 

 

 

Now use the summary() function to take a look at the multiple regression output for your 

linear model.  Complete the table below. 

Adjusted R2 =     dfresidual = 

Effect Coefficient t p 

Intercept    

    

    

    

    

    
Test the assumption that the residuals are normally distributed using a Shapiro-Wilk test, and 

provide the results.  Is the assumption met? 

 W =     p =  

 

Finally, how would you interpret your multiple regression analysis above (biologically)? 
 

 

 

 

 

 

 

3. Backward Stepwise Elimination 
In having calculated the number of terms that a fully crossed model including five main effects 

would have, you may be wondering how one can simplify the model without just ignoring 

interactions, as we did above.  There are multiple ways to do this, and some are controversial.  

First you should check the tolerance and/or intercorrelation of main effects to see if some of 

them should be eliminated.  An approach that is then often taken is called “backward stepwise 

elimination”.  Some researchers view this as an integral part of finding the best model that fits 

your data, while others view it as “data mining”, which is doing multiple analyses to just see 

what happens.  Critics of this approach argue that it violates the principle that you should plan 

your analyses prior to doing the experiment.  Repeating different forms of an analysis can be 

interpreted as “doing things until you get a significant result”.  An alternative approach would be 

to think carefully about which interactions may be meaningful and include only those.  We will 

take such an approach later in the semester as well. 
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To do backward stepwise elimination, you would take the following steps: 

1. Do a multiple regression with all the terms included 

2. Examine the highest order interactions and eliminate those that are not significant 

3. Redo your multiple regression excluding those terms 

4. Repeat until the highest order terms are significant 

In taking this approach, there are two important rules to adhere to.  First, if an interaction term is 

significant, then you have to keep all of its main effects in the model, even if they are not 

significant.  Second, in your final model, all terms (including interactions) should have 

tolerances >0.1 for reasons discussed above. 

 

We will use the bird abundance data from the previous section to do a backward stepwise 

elimination.  To keep things manageable, only use the explanatory variables Larea, grazing, and 

years.  Attach the “bdata” object, if not already done.  Fit the fully crossed model as follows: 
> bmr1 <- lm(Abund ~ Larea + Graze + Year + Larea:Graze + 

Larea:Year + Graze:Year + Larea:Graze:Year) 
 

You could specify this same model formula much more efficiently by using other operators than 

‘+’, but typing all of the above will make it easier to modify so as to eliminate terms that are not 

significant.  How would you specify the model formula above most efficiently? 

 

 

Use summary(bmr1) to view the regression results.  Starting with just looking at the highest 

order interactions, which terms (if any) would you eliminate? 

 

 

Repeat the multiple regression with the appropriate term(s) eliminated and assign it to object 

“bmr2”.  Again, view the summary and check the tolerances.  If an interaction has very low 

tolerance, even if it is significant, it needs to be eliminated.  Eliminate highest order 

interactions with the lowest tolerances first. Continue eliminating terms until you are left with 

significant terms with acceptable tolerances.  For each step of your backward stepwise 

elimination, list the terms that you eliminate below, and mention why (not significant and/or 

low tolerance). For your final model, write the terms that remain, marking significant ones 

with an asterisk.  You may find that some terms that were previously significant, no longer 

are.  This frequently happens, showing you how low tolerances can make the coefficients 

unstable. 
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Does your biological interpretation of the bird abundance data change from when you did not 

consider any interactions?  If so, how would you now interpret your analysis? 
 

 

 

 

 

 

4. Two Ways of Doing Analysis of Covariance 
Now that you have learned how to do various forms of ANOVA and multiple regression in R, it 

is time to build on these techniques by learning Analysis of Covariance, or ANCOVA.  

ANCOVA is very useful when you have nuisance variables – either continuous or categorical – 

that you need to account for in your analysis.  We will start by expanding the ANOVA design to 

include a continuous covariate.  We will then expand on our multiple regression skills by adding 

a categorical nuisance variable.  This may seem counter-intuitive because ANOVA is normally 

used for categorical variables and vice versa for multiple regression, but it is correct.  To further 

reinforce this, complete the following table, specify whether each variable is categorical or 

continuous: 

Variable ANCOVA building on ANOVA ANCOVA building on Regression 

Response    

Explanatory   

Nuisance   
 

 

5. ANCOVA with Continuous Nuisance Variables 
Using ANCOVA by building on ANOVA when you have a continuous nuisance variable, also 

called a covariate, is simpler than the other form of ANCOVA, so we will cover it first.  You are 

accustomed to ANOVA having one or more categorical explanatory variables, called factors.  

For this type of ANCOVA, you also have a continuous explanatory variable, and it just so 

happens that in many instances, this is some sort of nuisance variable.  Consider the linear model 

for this type of ANCOVA: 

��� = 
 + �� + ����� − �̅� + ��� 
The response, grand mean, and residual should all be familiar from all the linear models we have 

studied.  the αi term is just taken from an ANOVA and is your categorical factor.  The remaining 

term refers to the covariate, where β is the partial regression coefficient, xij is each observation of 

the covariate, and then you have the covariate mean.  Subtracting the covariate mean from the 

covariate essentially factors out the effects of the covariate from your ANOVA.  You can also 

add other factors and covariates – the above model is the simplest (and most useful) case, with 

one factor and one covariate. 

 

Recall that when you learned how to do ANOVA in R, if you had a numerical factor, you had to 

ensure that it was treated as a categorical variable (e.g., three levels of density of mosquito 

larvae).  If you neglected to do that, R would simply treat it as a continuous covariate.  At that 

time, you did not want to do that because you were comparing specific density levels to one 

another, which cost p-1 degrees of freedom (where p is the number of levels in the factor), and 



Lab 5: ANCOVA – Page 7 

 

resulted in a maximally powerful test.  But what if you do not have your potentially continuous 

variable distributed so cleanly?  ANCOVA is the answer. 

 

Load the stickleback dataset that you used in lab 1, and assign it to an object called “sdata”.  

Use “str(sdata)” to refresh your memory of the dataset.  Data included sex, standard length 

and mass for a sample of stickleback fish, as well as the number of parasites and total parasite 

mass in each fish.  Do an ANCOVA to see if total parasite mass in each fish differs between 

the sexes, while taking the standard length of the fish into account as a covariate (you might 

expect larger parasites to fit in a larger fish).  Use the following syntax, and then take the 

summary of it: 
> aov(Response~Factor+Covariate) 
 

What are your conclusions from your analysis? 

 

 

 

 

Test for normality of the residuals using a KS test.  Are they normally distributed? Please 

report the test statistic and p-value. 
 

 

 

 

One limitation to the ANCOVA that builds on an ANOVA design is that it assumes that there is 

equality of slopes among factor levels.  What this means is that it is assumed that the slope 

between the response and covariate is the same for each level of the factor.  The factor then tests 

for a difference in intercept.  If the slope is different, then comparing intercepts is not very useful 

(since they will most likely differ).  A good way to test this assumption is by fitting a model with 

the interaction between factor and covariate and seeing if the interaction is significant.  What 

would a significant interaction mean? 
 

 

Repeat your ANCOVA, but this time include the interaction term.  Complete the table below.  

Is the equality of slopes assumption met? Explain why or why not. 

Effect DF MS F P partial η2 

Sex      

SL      

Sex*SL      

Residual      
 

 

 

 

 

 

 



Lab 5: ANCOVA – Page 8 

 

6. ANCOVA with Categorical Nuisance Variables 

As the last part of this lab, we will learn to do ANCOVA in a different way, by building on what 

we learned about multiple regression.  This is a little more involved than the previous version of 

ANCOVA, but possibly even more useful.  In this approach, you have a nuisance variable that is 

categorical and are studying relationships between two continuous variables.  Consider that you 

could be studying the scaling relationships of body parts in some species and have samples from 

different populations.  In this hypothetical example, what is the nuisance variable? 

 

 

 

Normally, to do an ANCOVA in this way, you first need to create a series of variables, called 

dummy variables, that recode your nuisance variable in a binary fashion.  If you have p groups 

in your nuisance variable, you will make p-1 dummy variables, where one of the groups takes a 

zero for all dummy variables, and each of the remaining groups takes a one for exactly one of the 

dummy variables.  In this way, each observation (row) will have a maximum of a single one, 

with all other dummy variables having a zero. 

 

Assignment (1 point) 

Let’s give dummy variable coding a try.  If you refer back to the age-at-first-feeding in 

stickleback dataset from Lab 3, we had samples of fish from four lakes: Bearpaw, Cornelius, 

Kalmbach, and Willow.  Since there are four lakes, you would have p-1 = 3 dummy variables.  

Complete the table below for this example, where “D#” is each of the dummy variables: 
 

Lake D1 D2 D3 

Bearpaw    

Cornelius    

Kalmach    

Willow    
 

 

Now that you understand dummy variables, we can take a look at the linear model for this type 

of ANCOVA and learn the technique: 

��� = � + ���� + ���1 + �	�1�� +⋯+ �� 
Here, yij is the response variable for individual i from nuisance category j, α is the intercept, and 

β0 is the slope for the relationship between x and y for the nuisance category that has all dummy 

variables set to zero.  The next two terms are the adjustment in intercept and slope, respectively, 

for the nuisance category that has D1 = 1, relative to the category that has all dummy variables 

equal to zero.  So, the analysis uses the regression for the category with all dummies set to zero 

as a reference line.  Subsequent terms for intercept (βD#) and slope (βD#xi) are differences from 

the reference line.  The tests of whether these β-values (partial regression coefficients) are 

significant actually test whether they are significantly different from the reference line, not from 

zero.  Because you include terms for the intercept for each line, the assumption we made earlier, 

that slopes are equal, is not made in this type of ANCOVA.  Finally, to clarify, each line 

(whether reference or otherwise) is represented by two terms. 
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Assignment (2 points) 

For the following linear model, that corresponds to the lake example above, label each term.  

Is it a slope or intercept term?  Which lake does it correspond to?  Also identify what terms 

represent the reference line, and which ones are differences from the reference line. 
 

 

��� = � + ���� + ���1 + �	�1�� + �
�2 + ���2�� + ���3 + ���3�� + �� 
 

 

As you can see, understanding dummy variables is key to understanding how to do this version 

of ANCOVA.  Coding dummy variables and including them in the model formula in R is a 

perfectly acceptable way of doing this.  However, if you fit a model using lm and include a 

categorical variable as one of your explanatory variables, R automatically implements this sort of 

ANCOVA without you having to code any dummy variables.  Note that most other statistical 

software require that you code and include dummy variables.  Let's do the ANCOVA, letting R 

make its own dummy variables instead of coding them ourselves. 

 

Assignment (7 points) 

Use the Stickleback parasite data from Lab 1, which you should already have in your 

workspace as "sdata".  Attach the data frame so that you can refer to it easily. 

 

Biologically, you are interested in how mass increases with size in threespine stickleback fish.  

This could occur in different ways for males and females, and so this is your nuisance 

variable.  Use the lm(model) function to fit your ANCOVA model to the data, and assign this 

model to an object (named whatever you choose).  Write the model formula that you specified 

in R notation below. 
 

 

 

Complete the table, generated from the summary of your model below.  Instead of using the 

usual α=0.05, use α=0.10.  Under these conditions, what do you conclude from your 

ANCOVA?  Make sure you address whether slope and intercept are different between the 

sexes, and whether the values for males or females are greater.  Include both a statistical 

interpretation and a biological one. 

 

Effect Coefficient t-value P 
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Make a scatter plot of mass and SL with the sexes represented using different symbols or 

colors and a regression line provided for each sex.  Add this figure here. 
 

 

 

 

 

 

 

 

 

 

Finally, are the residuals of your ANCOVA normally distributed?  Use a Shapiro-Wilk test. 
 

 


