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Biol 206/306 – Advanced Biostatistics 

Lab 4 – Bivariate Regression 

Fall 2016 
 

By Philip J. Bergmann 
 

 

0. Laboratory Objectives 
1. Review Ordinary Least Squares (OLS) regression 

2. Place ANOVA and Regression techniques in a common model framework 

3. Learn how to do an OLS regression in R 

4. Learn to test the assumptions of a regression in R 

5. Learn how Reduced Major Axis (RMA) and Major Axis (MA) regression compare to 

OLS, and when each should be used. 

6. Learn how to do RMA and MA regression in R 

 

 

1. Review of Ordinary Least Squares Regression 
OLS regression is the go-to technique for fitting a line of best fit to continuous data.  Typically, 

you have one continuous response variable and one continuous independent variable.  OLS 

regression assumes, like many statistical techniques, that the data are randomly sampled and 

independent.  There are also assumptions that the residuals are normally distributed and 

homoscedastic.  Finally, OLS regression assumes that the x (independent) variable is measured 

without error (or with very little error) – we will get back to this later. 

 

OLS regression is very similar to a single-factor ANOVA, with the main difference being that 

the regression uses a continuous independent variable, while the ANOVA uses a categorical 

independent.  As such, the linear model for a regression is very similar to that of the ANOVA.  

For an OLS regression, the model is: 

�� � � � ��� � �� 
This is the equation of a line, with yi and xi being the response and explanatory variables, 

respectively, α being the intercept, β being the slope, and εi being the residual or error term.  

How does this compare to the model equation for a single-factor ANOVA? 
 

 

 

 

 

2. OLS Regression in R 
You have already learned the functions needed to do an OLS regression, but have used them for 

ANOVA instead.  OLS regression is done by fitting a linear model to your data.  The function is 

as follows: 
> lm(formula, data, weights, …) 
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You can specify your formula in the usual form: Y~X and can specify a dataset if needed, as well 

as weights for the observations.  There are many other possible arguments that could be used as 

well and things can get quite complicated.  All we need is the formula argument. 

 

We will fit a linear model to data that you have seen before.  Last week you worked with a 

dataset that examined how the density of mosquito larvae influenced mosquito egg hatching 

success.  You considered density of larvae, species of eggs, and species of larvae as factors in an 

ANOVA.  You will use a subset of the same dataset this week to do an OLS regression.  Start by 

loading the dataset into R.  You need not go back to the Excel file, as you should have the 

dataset in tab-delimited text already.  Call the resulting object “mdata” again.  Now let’s 

simplify the dataset to only consider eggs of Aedes aegypti: 
> crp_mdata <- mdata[1:54,] 

 

We will also ignore the effects of larval species – it is sufficient that they all eat bacteria from 

egg surfaces.  Attach the cropped dataset and take a look at it and the variables in it.  Now try 

fitting a linear model with “Hatch” as your response, and “Density” as your independent, 

saving your model as “mosq_lm”.  Examine your linear model with the str() function to 

reinforce that his is a pretty complex object class, with many things in it.  To get your OLS 

regression results, simply use the summary() function.  What is the intercept and the slope?  Is 

each significantly different from zero? 

 

 

 

 

What is the R2 value, your measure of the strength of the relationship between Hatch and 

Density? 
 

 

The linear model produced by the lm function is useful beyond just getting a table of regression 

coefficients and tests of their significance (although these are useful parts).  Other functions, 

similar to summary() give you other information as well, or allow you to extract important 

information.  Try the following functions with your “mosq_lm” object: 

> coefficients() # Returns a vector with the slope and intercept. 

> residuals()  # Returns a vector with the residuals of the model. 

> df.residual()    # Returns the error/residual degrees of freedom, n-2 when bivariate. 

 

One other useful trick to getting more information out of your lm object is 

“str(summary(mosq_lm))”.  This shows you the structure of the summary object and shows 

you how you can refer to specific information in the summary.  What would you type to have 

the R2 value for the model printed to the screen? 
 

 

 

Having done an OLS regression, we can now test the assumptions that the technique makes.  

This is typically done using two tools.  First, if one plots the residuals against the independent 

variable, they can gain a lot of information.  Examining this plot helps to ensure that there are no 
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strange data qualities that would indicate non-independence of the data or non-randomness.  

Although this is not a perfect approach, it is a useful check.  Your plot of the residuals should 

appear as a random scatter of points with no odd patterns.  Note that if the independent variable 

is discretely sampled (as in the case of larval density) then, there will be columns of dots in the 

plot of residuals.  Within each column, there should be a seemingly random distribution of 

points.  The plot is also a reasonable test of the assumption of homoscedasticity.  There should 

be approximately equal variation in residuals across the range of the independent variable (no 

funnel-shaped patterns, for example).  The homoscedasticity assumption is not testable with 

regression using a Bartlett test, or similar test, if the independent variable is not categorical (note 

that the mosquito example doesn’t quite fit into this description, but imagine if the larval density 

varied with sample instead of being fixed at 4, 12, and 24).  Plot the residuals against the 

independent variable, either using the GUI of Deducer and JGR, or with the function “plot(x, 

y)”.  What can you say about the plot of residuals and whether the regression assumptions are 

met? 
 

 

 

 

Second, there are at least two implemented tests of normality in R that you can use to test the 

assumption of normality: 
> shapiro.test(x) 
> ks.test(x, "pnorm", mean=mean(x), sd=sqrt(var(x))) 

 

Both the Shapiro-Wilks and the Kolmogorov-Smirnov tests are perfectly valid tests of normality, 

and which is used often depends on what an individual statistician is taught.  The Shapiro-Wilks 

test is typically viewed as being more powerful (more likely to find a significant difference), 

while the KS test is more conservative.  Note that the Kolmogorov-Smirnov test requires more 

arguments because it is a more flexible test, designed to compare two distributions in general.  

The above arguments implement a KS test that compares the distribution of variable x to a 

normal distribution with mean and standard deviation equal to those of the variable x.  Do both 

tests on the residuals to your regression.  How do the results compare?  Which test is more 

stringent? 
 

 

 

 

Note: you may get a warning about ties being present for the KS test.  Ties (the same value for 

two data points) can decrease the robustness of the test, but you still get output.  Also remember 

that you can use these tests of normality to test the assumptions of ANOVA. 

 

 

3. RMA and MA Regression 
OLS regression is also called Model I regression, similar to an ANOVA with fixed factors, 

because the independent variable is assumed to be measured without error (and so is fixed).  

Model II regression relaxes this assumption and is appropriate when both variables being 

regressed have error associated with them.  Error refers to not only a scientist making a mistake 
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or not doing a measurement as well as they could have, but also to imprecision in the instrument 

used to take the measurement, and also random or unmodeled biological effects associated with a 

trait.  For example, in measuring a trait on a series of clones (so individuals that are genetically-

identical), various biological processes can result in non-identical traits. 

 

Reduced Major Axis (RMA) and Major Axis (MA) regressions are model II techniques, and so 

they are more appropriate to use than OLS regression any time when there is a reasonable 

amount of uncertainty in the x variable.  Also note that OLS regression implies causality – that 

changes in the independent variable result in variation in the response variable.  In model II 

regression, there is no independent and response variable, they are just x and y (or y and x).  

Consider doing a regression on leg length and arm length in a sample of humans.  Which 

variable causes the other to change? 
 

 

 

Although both RMA and MA regression take into account that both variables are measured with 

error, they are not created equal: how their residuals are calculated differs, and since a regression 

is optimized by minimizing the sum of squared residuals, they give slightly different lines (often 

almost the same).  RMA regression calculates residuals as the area of the triangle made by a data 

point and the line, while MA regression calculates them as the shortest distance from the line to 

the point (this distance is perpendicular to the regression line).  Although the MA residual is 

more intuitive than the RMA residual, it has been shown by simulation that MA regression is 

outperformed by RMA when there is comparable error in both x and y, and that it is 

outperformed by OLS when the error in x is much smaller than the error in y.  Hence, we will 

focus on RMA regression here. 

 

The slope of the RMA line can be easily calculated from the OLS line because �	
� � ��
� �⁄ .  

Since all regression lines (OLS, RMA, and MA) pass through the point (�̅, ��), the intercept of an 

RMA regression can simply be calculated from the equation of a line once the slope is known.  

What is the equation of a line?  Rearrange the equation to solve for the intercept. 
 

 

 

 

4. Doing RMA (and MA) Regression in R 
Despite the importance of model II regression techniques and their ease of calculation, most 

software packages do not do them.  Even in R, model II regression is not implemented as part of 

the standard “stats” package.  We will use two functions to conduct model II regressions: the 

package lmodel2 available online, and the function rma, written by Dr. Bergmann.  Install and 

load the package “lmodel2” using the standard approach in the “Packages” menu (or 

“Packages and Data” menu on a Mac).  Also download the “RMA_function.txt” file from the 

course website.  Then load the RMA function script as follows: File > Source R Code…, and 

select the file. 
 

Type “ls()” and notice that “rma” is now an object in memory.  This is because the function 

isn’t part of a package; it is only a text file with the R code.  I have used comment lines 
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(designated with the # symbol) that tell you what each set of lines does.  You can try to read 

through it and reason through the steps taken to do the RMA regression. 
 

The dataset that we will be using to do various model II regressions consists of a series of 

measurements of various body parts of the horned lizard, Phrynosoma blainvilli, from Baja 

California.  The dataset contains measurements of head length, snout-vent length, body width, 

and the lengths of four horns found on the posterior and lateral margins of the head (P1, P2, S1, 

S2) for 77 specimens belonging to both sexes.  The horns are listed in order from postero-medial 

to lateral and large to small.  The unlabeled column contains specimen numbers.  The specimens 

range from small to large, forming an ontogenetic series, so we can study how the proportions of 

the horns and body parts change as the animals grow.  Open the dataset in Excel, save it as a 

text file, and import it into R as an object named “horns”.  Attach the object horns so that you 

can refer to its variables simply. 
 

We will use the Phrynosoma horn dataset to study the allometry or scaling of the horns.  

Allometry is the study of how body part proportions change during ontogeny.  If we consider the 

allometry of horns relative to body length (SVL), we could see one of three patterns.  If the horn 

maintains the same proportions relative to the body through ontogeny, it is isometric.  If it gets 

longer relative to the body as the animal grows, it is positively allometric.  If it gets relatively 

shorter, it is negatively allometric.  A two-tailed one-sample t-test can be used to test whether 

the slope of the regression differs significantly from one (isometry).  Since scaling or allometric 

relationships follow an exponential equation, in these studies we always log-transform the data 

so that it is more normal and linear.   

 

Let’s start by using the lmodel2 package and function to calculate model II regressions.  The 

package computes slope and intercept for OLS, MA, and RMA regression, but it calls RMA 

regression “SMA”, or Standard Major Axis.  The difference in terminology is unfortunate, but 

the reason we refer to it as RMA in this course is because this name is more prevalent, at least in 

the biological literature.  What is nice about this function is that it also calculates 95% 

confidence intervals for the slope and intercept, which you can then use to test hypotheses, like 

the hypothesis of isometry – if the 95% CIs for the slope cross one, then the slope is not 

significantly different from one.  The function also returns the sample size, R, and R2.  It also 

gives the angle between OLS slopes of X on Y and Y on X, and some other numbers, all of 

which are not frequently used.  The function is as follows: 
> lmodel2(formula) 

Where the formula is of the form Y~X.  Note that you can have only one x variable because this 

is bivariate regression.  Also note that you can log-transform variables in the formula.  Try: 
> lmodel2(log(P1)~log(SVL)) 

 

Repeat this procedure for head length and the other horns (P2, S1, and S2).  Then complete 

the table on the next page with the information you get for the RMA (=SMA) regression. 
 

The disadvantage to the lmodel2 function is that it does not calculate regression residuals, and so 

they cannot be tested for the assumption of normality.  The rma function does this.  Because 

there is no good guidance about how residuals that are tested for normality should be calculated, 

the rma function calculates them in three ways for the RMA regression: as the area of the 
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triangle formed by each point and the regression line (the actual RMA residuals), as the square 

root of the first method (note that areas are in squared units, while all other residuals are 

Euclidean distances in the same units as the original measurements, hence the square root), and 

as the shortest distance from the line to the point (as would be done for MA residuals).  The 

function then tests for normality of each set of residuals using the Shapiro-Wilks test, and the 

Kolmogorov-Smirnov test.  Due to the lack of guidance in the literature as to what residuals to 

use, and different preferences of researchers for the test for normality, anyone using this function 

can make their own decision as to what type of residuals and what test they want to use. 

 

The syntax for the rma function is: 
> rma(x, y) 

Where x and y are the variables that you wish to regress on one another.  Use the rma function 

to repeat your regression analysis for HL and the four horns (don’t forget to use the logs of 

the variables.  Do you get the same slopes and intercepts? 

 

 

Assignment (10 points): 

In this sort of study, why is using model II regression superior to using model I regression? 
 

 

 

 

 

How would a model I regression (OLS) bias the slope estimate? (Hint: think about how you 

calculate an RMA slope from an OLS slope.) 
 

 

 

Complete the table below with information for each RMA regression.  In the "Scaling" 

column note whether each variable is isometric, negatively allometric, or positively allometric 

relative to SVL. 

Y var R Intercept Slope Low CI High CI Scaling 

HL       

P1       

P2       

S1       

S2       
 

What are your biological conclusions from this regression analysis? 
 

 

 

 

 

 



Lab 4: Bivariate Regression – Page 7 

 

Is the KS or the SW test more sensitive to departures from normality? 

 

 

 

If you use the KS test for normality for the square rooted RMA residuals, which regressions 

meet the assumption of residual normality and which ones do not? 

 

 

What about if you consider the KS test of regular RMA residuals? 

 

 

 

For the regression of the horn log(P1) on log(SVL), make a scatterplot of the two variables, 

and a scatterplot of the square rooted RMA residuals against log(SVL).  Also make a 

histogram of the residuals (Hint: all of these data are in the RMA function output). Insert the 

two figures with residuals at the end of this document and resize them so that they fit on a 

page along with your question answers.  From examining the figures, why do you think that 

the SW test suggests that the residuals for this regression are not normal? 

 


