
Variation in the allometry of exaggerated rhinoceros beetle horns

Erin L. McCullough a, b, *, Kimberly J. Ledger a, Devin M. O'Brien a, Douglas J. Emlen a

a Division of Biological Sciences, University of Montana, Missoula, MT, U.S.A.
b Centre for Evolutionary Biology, University of Western Australia, Crawley, Western Australia, Australia

a r t i c l e i n f o

Article history:
Received 1 June 2015
Initial acceptance 8 July 2015
Final acceptance 27 July 2015
Available online
MS. number: A15-00468R

Keywords:
allometry
dimorphism
Dynastinae
horn
rhinoceros beetle
scaling
sexual selection

Exaggerated horns are a characteristic feature of many male rhinoceros beetles. We surveyed and
compared the scaling relationships of these sexually selected weapons for 31 Dynastinae species with
different degrees of horn exaggeration. We found that nearly all rhinoceros beetle species were male
dimorphic, that the allometric slope of major males was consistently shallower than the slope of minor
males, and that the decrease in slope was greatest among species with the most exaggerated horns.
These patterns are consistent with the curved allometries of stag beetle mandibles and giraffe weevil
rostra, and suggest that the depletion of developmental resources is a general phenomenon limiting the
continued exaggeration of insect weapons. The dimorphisms in horn morphology are expected to
correspond to behavioural differences between major and minor males, but little is still known about the
mating tactics of most rhinoceros beetle species. Future studies on the relative benefits and performance
of horns during maleemale combat are needed to fully understand the diversity of horn allometries and
the evolution of exaggerated structures.
© 2015 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.

Variation in organismal shape is largely characterized by dif-
ferences in the relative size of body parts (Huxley, 1932; Thompson,
1942). That is, many of the gross differences in body shape among
diverse animal taxa are due to differences in the proportional size
of body structures (e.g. the enlarged beak of toucans, or the elon-
gated neck of giraffes). Within species, such shape differences are
typically less pronounced, because most traits scale proportion-
ately with body size. A few traits, however, increase in size much
faster than overall body size, so large individuals are not simply
scaled-up versions of smaller ones. Nowhere are these patterns
more pronounced, or steep scaling relationships more apparent,
than in the context of sexually selected traits (Kodric-Brown, Sibly,
& Brown, 2006; Shingleton & Frankino, 2013).

Ornaments and weapons are typically much more variable than
other nonsexual structures (Alatalo, Hoglund, & Lundberg, 1988;
Cotton, Fowler, & Pomiankowski, 2004a; Emlen, Warren, Johns,
Dworkin, & Lavine, 2012; Fitzpatrick, 1997; Kawano, 2004;
Pomiankowski & Møller, 1995), and they almost always exhibit
positive allometries, or scaling relationships with slopes greater
than 1 (Gould, 1973; Green, 1992; Kodric-Brown et al., 2006;
Petrie, 1992; Simmons & Tomkins, 1996). Large individuals

therefore have disproportionately larger ornaments and weapons
than small individuals, which results in extreme variation in trait
size and overall body form. Sexual selection is expected to favour
the evolution of these steep scaling relationships for several rea-
sons. First, ornaments and weapons are typically used to signal a
male's condition to potential mates or competitors, and the costs
and benefits of signalling are expected to be size dependent. That
is, large males should benefit from producing large signals by
attracting more females or deterring rivals, while small males
should gain very little from advertising their small size and poor
condition (Green, 1992; Petrie, 1992; Simmons & Tomkins, 1996).
Second, because ornaments and weapons are often expensive to
produce and carry, only large, high-quality males are expected to
be capable of producing them (Andersson, 1982; Kodric-Brown &
Brown, 1984; Nur & Hasson, 1984; Zahavi, 1975). Third, because
traits with steep scaling relationships amplify differences in body
size, these traits may be particularly informative signals to choosy
females and rival males in discerning otherwise subtle differences
in a male's overall size and condition (Cotton, Fowler, &
Pomiankowski, 2004b; Emlen et al., 2012; Kodric-Brown et al.,
2006; Maynard Smith & Harper, 2003). Indeed, theoretical models
indicate that, as long as males with the smallest traits can occa-
sionally succeed at mating, sexual selection drives the evolution of
ornaments and weapons with strong positive allometry
(Fromhage & Kokko, 2014).
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Although simple linear allometries have received the most
attention in the sexual selection literature, sexual traits can also
exhibit more complex, nonlinear scaling relationships (Knell,
2009). In particular, sexual ornaments and weapons in insects
exhibit a variety of nonlinear allometries, including curved,
sigmoidal and discontinuous (Eberhard& Gutierrez, 1991; Emlen &
Nijhout, 2000; Knell, 2009; Knell, Pomfret, & Tomkins, 2004;
Nijhout & Wheeler, 1996; Pomfret & Knell, 2006). The shapes of
scaling relationships are important for evolutionary biologists
because they offer clues about the selective pressures acting on
these traits. For example, the sigmoidal allometries of many horned
dung beetles are likely to reflect alternative adaptations for
obtaining mating opportunities, with large, horned ‘major’ males
specialized for fighting, and small, hornless ‘minor’ males special-
ized for sneaking (Eberhard & Gutierrez, 1991; Emlen, 1997; Emlen
& Nijhout, 2000; Moczek & Emlen, 2000; Rasmussen, 1994), and
the curved allometries of exaggerated stag beetle mandibles may
reflect a depletion of developmental resources that ultimately
limits mandible growth (Knell et al., 2004). Previous authors have
even suggested that the evolution of nonlinear allometries should
favour the evolution of exaggerated structures (Emlen & Nijhout,
2000), yet, to date, little is known about how the shape of scaling
relationships vary among closely related species with different
degrees of trait exaggeration.

Here, we present and analyse themost comprehensive survey to
date on the scaling relationships of rhinoceros beetle horns. Male
rhinoceros beetles produce long horns on their head and prothorax,
and use them as weapons in maleemale battles over reproductive
access to females (Beebe, 1944, 1947; Eberhard, 1977, 1980; Hongo,
2007; Siva-Jothy, 1987). Rhinoceros beetles exhibit a wide range of
both absolute and relative horn sizes (Enr€odi, 1985; Mizunuma,
1999), which makes them an ideal system for comparing the
scaling relationships among species with different degrees of horn
exaggeration. We use our data to test for associations between
scaling relationship shape and among-species patterns of horn
exaggeration, and discuss the factors that have influenced the
shape of horn allometries and the evolution of exaggerated
structures.

METHODS

We measured male specimens of nearly all horned Dynastinae
species from collections of the Smithsonian Institute and the Uni-
versity of Nebraska State Museum. We focused on the scaling re-
lationships of head horns because the head horn is used to pry and
dislodge opponents from contested resource sites (Beebe, 1944;
Eberhard, 1980; Hongo, 2003; McCullough, Tobalske, & Emlen,
2014), and therefore is likely to be the primary target of sexual
selection. All species with at least 20 males were measured and
analysed, except for species belonging to the genus Strategus, which
have thoracic horns but no head horns.

Horn length and body size were measured to the nearest
0.01 mm with dial calipers. We measured head horn length
(hereafter simply referred to as horn length, unless otherwise
specified) as the straight-line distance from the clypeus to the horn
tip (Eberhard & Gutierrez, 1991; Kawano, 1995; Knell et al., 2004),
and body size as pronotum width (see Emlen, 1997, for justifica-
tion). Our results were qualitatively the same when we used elytra
length instead of prothorax width as the measure of overall body
size (McCullough, 2012). Males with visible signs of injury were
measured, but only those with intact and undamaged horns were
included in the allometric analyses. Analyses were performed on
log-transformed data. Our complete data set included measure-
ments from 31 species, representing 16 genera (Supplementary
Material).

Visual inspection of the logelog scatterplots suggested that the
relationships between horn length and body size were nonlinear
for nearly all species. We therefore followed the recommendations
of Knell (2009) to characterize possible nonlinear allometries. For
each species, we compared five models on the basis of their
goodness of fit (using Akaike's information criterion, AIC) to
determine which model gave the best description of the relation-
ship between horn length and body size: (1) a simple linear model,
(2) a quadratic model and (3) three different breakpoint models of
the form: horn length ¼ body size "morph, where morph is a
factor distinguishing major and minor males. For the breakpoint
models, individuals were separated into the two morphs based on
either a threshold body size (following the procedure outlined in
Eberhard & Gutierrez, 1991) or a threshold horn length (following
the procedure outlined in Kotiaho & Tomkins, 2001), or by exam-
ining a frequency histogram of the ratio between horn length and
body size to determine a threshold ratio (following the basic
approach of Cook & Bean, 2006). We chose the model with the
lowest AIC score as the best-fit allometric model. Models with AIC
scores that differ by less than 2 are considered to be indistin-
guishable from each other in their explanatory power (Burnham &
Anderson, 2002), but this was an issue for only two species. In both
cases, the competing models were different breakpoint models,
and thus equally parsimonious, so we selected the model with the
lowest AIC score.

We found that 30 of the 31 species had breakpoint allometries
(see Results, Fig. 1). We therefore conducted further analyses to
explore the scaling relationships between horn length and body
size for the major and minor morphs. The remaining species
(Heterogomphus hirtus) had a quadratic allometry with a decreasing
slope.We include the rawmorphometric data for this species in our
supplemental data file, but we excluded it from subsequent ana-
lyses on the dimorphic species.

We calculated the residuals from the least squares regression of
logmedian horn length on logmedian body size as an index of horn
exaggeration across species (Knell et al., 2004; Simmons &
Tomkins, 1996; see Results, Fig. 2). A positive residual indicates
that the species has a longer, or more exaggerated, horn than ex-
pected for its body size, while a negative residual indicates that the
species has a shorter, or less exaggerated, horn than expected for its
body size. We used median horn length and body size rather than
means because the median is more robust to outliers and therefore
less likely to be affected by potential collection biases for very large
males (Knell et al., 2004).

Becausemost species have both a head horn and a thoracic horn,
we also calculated a composite measure of horn exaggeration (i.e.
an index of total horn investment) by adding the lengths of the
head horn and thoracic horn. (In Chalcosoma atlas and Coelosis
bicornis, we calculated total horn investment by adding head horn
length and twice the thoracic horn length, because males have a
pair of thoracic horns.) Thoracic horn length was measured as the
straight-line distance from the base of the pronotum to the horn
tip.

We examined the relationships between horn exaggeration,
total horn investment and allometric slopes using general linear
models. As yet, there is no complete phylogeny for the Dynastinae,
so we were unable to use robust comparative analyses that take
into account tree topologies and branch lengths. We therefore used
taxonomy to account for shared evolutionary history, which is
preferable to ignoring evolutionary history altogether (Freckleton,
2009; Sunday, Bates, & Dulvy, 2011). Specifically, we controlled
for the nonindependence of the data due to phylogenetic related-
ness by using linear mixed effects models with genus as a random
effect using the lme function in R (Blackburn & Duncan, 2001;
Sodhi et al., 2008; Sunday et al., 2011; Woods & Smith, 2010).
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RESULTS

Nearly all of the rhinoceros beetles that we measured and
analysed were male dimorphic; 30 of the 31 species had a
discontinuous breakpoint allometry, with different lines
describing the relationship between horn length and body size
for major and minor morphs (Fig. 1). The two morphs overlapped

considerably in both horn length and body size in most species
(22 species, 73%), so the morphs were best separated by calcu-
lating the ratio of horn length to body size. Of the remaining
species (Fig. 2), there were seven (23%) in which the two morphs
were best separated by a threshold horn length, and one (3%) in
which the two morphs were best separated by a threshold body
size.
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Figure 1. Variation in the allometric relationships between horn length and body size among the 30 dimorphic species. Closed circles represent major males, and open circles
represent minor males.
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Table 1 reports the median horn length, median body size and
horn allometry of major and minor males for all dimorphic species.
There was a significant positive relationship between residual horn
length and median head horn length among species (F1,28 ¼ 10.24,
R2 ¼ 0.27, P < 0.001), indicating that species with relatively longer
horns also had absolutely longer horns. There was also a significant
positive relationship between residual horn length and total in-
vestment in horns (F2,20 ¼ 7.54, R2 ¼ 0.43, P < 0.001; with protho-
rax width included as a covariate to remove the effect of body size),
which is attributed, at least in part, to the positive correlation be-
tween median head horn length and median thoracic horn length
(F1,21 ¼13.59, R2 ¼ 0.39, P ¼ 0.001). These results indicate that
males do not invest in head horns at the expense of thoracic horns
(or vice versa).

The allometric slopes were significantly steeper for minor males
than for major males (t29 ¼ 3.56, P ¼ 0.001). The mean ± SD slope
was 2.32 ± 0.98 for minor males and 1.67 ± 0.56 for major males.
Both morphs had allometric slopes that were significantly greater
than 1 (minor males: t29 ¼ 7.36, P < 0.001; major males: t29 ¼ 6.59,
P < 0.001). There was a significant positive relationship between
the allometric slope of minor males and residual horn length
(F1,28 ¼ 9.18, R2 ¼ 0.25, P < 0.01), but there was no relationship
between the allometric slope of major males and residual horn
length (F1,28 ¼ 0.22, R2 ¼ 0.01, P ¼ 0.64; Fig. 3). These results indi-
cate that minor males exhibit steeper scaling relationships in spe-
cies with more exaggerated horns. There was also a significant
positive relationship between residual horn length and the differ-
ence in slopes between minor and major males (F1,28 ¼ 17.28,
R2 ¼ 0.38, P < 0.001; Fig. 4), indicating that species with more
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Figure 2. Interspecific relationship between median horn length and median prono-
tum width (F1,28 ¼ 76.6, R2 ¼ 0.73, P < 0.001). Insets show examples of species with a
positive residual horn length (i.e. high degree of horn exaggeration, Dynastes hercules)
and a negative residual horn length (i.e. low degree of horn exaggeration, Hetero-
gomphus chevrolati).
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exaggerated horns exhibit a greater decrease in allometric slope
between minor and major males. This relationship remained sig-
nificant even after controlling for phylogenetic relatedness
(t14 ¼ 4.26, P < 0.001).

Many specimens showed signs of injury from fights, including
scratches and punctures on their elytra or pronota, and chipped or
broken horns. On average, 7% (maximum ¼ 17%) of the specimens
for a given species showed some sign of injury, and 3%
(maximum ¼ 9%) of the specimens had broken horns. There was a
weak, positive relationship among species between residual horn
length and the frequency of injuries (F1,28 ¼ 3.72, R2 ¼ 0.12,
P ¼ 0.06), suggesting that species with more exaggerated horns
suffer higher rates of damage from fights.

DISCUSSION

We found strong evidence for male dimorphism in the rhinoc-
eros beetles. Nearly all of the species surveyed had discontinuous,
breakpoint allometries, indicating the presence of two male
morphs. The two morphs, however, were relatively cryptic (sensu
Cook & Bean, 2006), because there was substantial overlap in both
horn length and body size. These results contrast with the patterns
observed in horned dung beetles and other dimorphic insects in
which males transition from having no horns to having fully sized
horns over a narrow range of body size (Cook, 1987; Eberhard &
Gutierrez, 1991; Emlen, 1997; Moczek, 1998). Previous authors
have argued that the ability to developmentally switch from min-
imal to maximal trait expression may have facilitated the evolution
of exaggerated morphologies by uncoupling the phenotypes of
large and small individuals, thereby allowing the two size classes to
evolve relatively independently (Emlen & Nijhout, 2000; West-
Eberhard, 1989, 1992). Our results do not support this hypothesis.
Despite the impressive size of rhinoceros beetle horns, there were
no species that transitioned abruptly from minimal to complete
horn expression, which indicates that the developmental capacity

to prevent horn growth in small individuals is not necessary for the
evolution of exaggerated morphologies.

Male dimorphisms are common among insects and are typically
associated with alternative reproductive tactics (Gross, 1996;
Oliveira, Taborsky, & Brockmann, 2008). For example, in many
horned dung beetles, large ‘major’ males use their horns as
weapons to guard the entrances of tunnels and fight with rival
males over access to females, while small hornless ‘minor’ males
rely on sneaking behaviours to gain matings inside the tunnels
guarded by larger males (Cook, 1987; Emlen, 1997; Moczek &
Emlen, 2000; Rasmussen, 1994). Unfortunately, very few rhinoc-
eros beetle species have been studied rigorously in the field, so it is
largely unknown whether the two morphs identified by our allo-
metric analyses use different tactics to gain matings. In the South
American rhinoceros beetle Podischnus agenor, there is evidence
that minor males emerge earlier in the season and have a greater
tendency to disperse than major males, which may represent a
nonaggressive satellite tactic to reduce the probability of direct
combat with major males (Eberhard, 1982). However, in the Asian
rhinoceros beetle Trypoxylus dichotomus, there are no apparent
differences in behaviour between morphs: both minor and major
males use their horns to fight with rivals, and both have been found
using sneaking behaviours (Hongo, 2003, 2007). These observa-
tions highlight the need for more behavioural studies on natural
populations of rhinoceros beetles, because discrete morphological
morphs do not necessarily correspond to discrete behavioural
morphs (Knell, 2009).

Both major and minor males showed steep positive allometries,
and therewas a positive correlation between the allometric slope of
minor males and residual horn length. These results are consistent
with the patterns found in the scaling relationships of earwig for-
ceps and stalk-eyed fly eyespans, in which species with the most
intense sexual selection also have the steepest allometric slopes
(Baker & Wilkinson, 2001; Simmons & Tomkins, 1996). Although
we recognize that not all traits exhibiting positive allometries are

Table 1
Sample size, median body size, median horn length and allometric slope of minor and major males of all dimorphic rhinoceros beetle species included in the study

Species N Body size (mm) Horn length (mm) Minor slope Major slope

Augosoma centaurus 83 25.29 27.57 3.18 1.50
Chalcosoma atlas 42 24.93 21.02 1.95 0.51
Coelosis bicornis 44 13.61 10.48 1.50 0.91
Diloboderus abderus 106 12.13 12.37 2.66 1.33
Dynastes granti 158 18.05 13.54 1.99 1.76
Dynastes hercules 71 30.63 38.63 3.45 2.24
Dynastes tityus 172 19.79 12.53 1.23 1.66
Enema pan 95 24.97 22.82 0.90 1.25
Golofa costaricensis 63 15.08 11.54 3.56 2.40
Golofa eacus 58 14.28 12.13 3.07 2.26
Golofa imperialis 22 13.84 8.41 2.55 2.79
Golofa pelagon 34 12.55 7.57 1.74 2.65
Golofa pizarro 70 15.62 15.22 3.38 1.57
Golofa tersander 24 12.71 11.83 4.67 2.09
Heterogomphus chevrolati 94 21.91 11.36 2.50 1.57
Heterogomphus schoenherri 68 18.06 10.06 1.72 1.25
Megasoma elephas 35 37.79 33.87 1.45 1.76
Megasoma pachecoi 144 15.83 10.47 2.71 1.83
Megasoma thersites 38 15.46 9.16 0.95 1.33
Oryctes boas 47 16.87 14.14 3.79 2.07
Oryctes nasicornis 59 13.73 8.40 3.33 1.79
Oryctes rhinoceros 70 17.43 9.27 2.41 1.82
Podischnus agenor 68 15.84 10.36 3.31 2.02
Podischnus oberthueri 29 16.17 10.40 1.78 1.45
Spodistes mniszechi 40 11.62 7.01 2.00 2.49
Trypoxylus dichotomus 49 23.62 25.55 1.73 0.96
Xyloryctes ensifer 25 17.36 9.18 0.97 1.20
Xyloryctes jamaicensis 73 14.82 8.58 0.80 0.79
Xylotrupes gideon 480 17.43 11.00 1.82 1.72
Xylotrupes pubescens 36 18.08 10.64 2.39 1.14
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sexually selected, and not all sexually selected traits are positively
allometric (Bonduriansky, 2007), we expect sexual selection to be
the primary force driving the positive allometry of rhinoceros
beetle horns. Theoretical models predict sexual selection to favour
the evolution of traits with particularly steep allometries when
maleemale competition is intense and trait differences decisively
determine the outcomes of competitive interactions (Fromhage &
Kokko, 2014). These conditions are characteristic of rhinoceros
beetle mating systems; in all species studied to date, horns are used
exclusively in the context of intense maleemale battles, horn
length is the determining factor in the outcome of fights, and males
with the longest horns win (Beebe, 1944; Eberhard, 1980; Hongo,
2003, 2007; Karino, Niiyama, & Chiba, 2005; Siva-Jothy, 1987).

In contrast to the positive correlation between residual horn
length and the allometric slope of minor males, there was no
relationship between residual horn length and the allometric slope
of major males. Major males generally had shallower slopes than
minormales, and the difference in slope depended on residual horn
length: species with relatively long horns showed a greater

decrease in slope between major and minor males than did species
with relatively short horns. These patterns mirror the curved al-
lometries of stag beetle mandibles (Huxley, 1932; Knell et al., 2004)
and the tapered allometries of giraffe weevil rostra (Painting &
Holwell, 2013), and suggest that asymptotes in maximum trait
size are common among beetles and other holometabolous insects
with exaggerated weapons.

We predict that the decline in slope from minor to major males
reflects a limitation in resource allocation during horn growth
(Knell et al., 2004; Nijhout & Wheeler, 1996; Tomkins, Kotiaho, &
LeBas, 2005a). Because beetle horns develop from a finite
resource pool after the larva has stopped feeding, the growth of
very large horns may locally deplete developmental resources, and
thereby limit further allometric growth (Knell et al., 2004; Tomkins
et al., 2005a). In particular, large individuals of species with rela-
tively long horns are the most likely to suffer from resource allo-
cation constraints, which helps explain why the decline in
allometric slopes between major and minor males is greatest
among species with the largest residual horn lengths, and thus the
most exaggerated horns (Knell et al., 2004).

There are at least three alternative explanations that could also
account for the decline in slope between major and minor males.
First, the fitness gain from greater investment in horns may
decrease with body size. For example, if major males already have a
competitive advantage over most males in the population due to
their large size, they may not face strong selection to invest further
in horn growth (Painting & Holwell, 2013). Future studies should
therefore measure the relative benefits of horn investment across
the full range of male body size to examine how different fitness
functionsmay affect the shape of horn allometries (Bonduriansky&
Day, 2003; Pomfret & Knell, 2006).

Second, resource allocation trade-offs with other fitness-
enhancing traits may prevent major males from investing more in
horns. Previous studies on armed insects have shown that the
development of exaggerated weapons often comes at a cost to the
development of other body parts, such as eyes, wings or testes
(Emlen, 2001; Nijhout & Emlen, 1998; Simmons & Emlen, 2006;
Yamane, Okada, Nakayama, & Miyatake, 2010), so strong selection
on a male's ability to see, fly or invest heavily in sperm may
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constrain the further exaggeration of horns (Emlen, 2001; Yamane
et al., 2010).

Third, increasingly larger horns may be prohibitively costly if
males cannot also invest more in compensatory or supportive
traits. Sexually selected weapons are often accompanied by
changes in morphology and physiology that either mitigate the
costs of bearing these structures (Husak& Swallow, 2011; Oufiero&
Garland, 2007), or enhance a male's ability to use them in mal-
eemale combat (Okada & Miyatake, 2009; Tomkins, Kotiaho, &
LeBas, 2005b). For example, male stalk-eyed flies have larger
wings and thoraces than females, which may offset the costs of
flying with their exaggerated eyespans (Husak, Ribak, Wilkinson, &
Swallow, 2011; Ribak & Swallow, 2007; Swallow, Wilkinson, &
Marden, 2000), and male earwigs with relatively large forceps
also have relatively large hindlegs, which presumably helps them
wield the weapons and improves their fighting success (Tomkins
et al., 2005b). Because selection should favour individuals that
can use, display and bear their weapons most effectively, male
rhinoceros beetles may not benefit from developing larger horns
unless there are commensurate changes in their integrated body
plan.

There was a significant correlation between investment in head
horns and thoracic horns, and the scaling relationships of thoracic
horns were very similar to those of head horns (McCullough, 2012).
These observations suggest that head and thoracic horns are
developmentally coupled, but further work is needed to determine
whether this link is due to the same genetic mechanism for horn
growth, or similar selection on head and thoracic horns as an in-
tegrated fighting structure (Okada & Miyatake, 2009; Tomkins
et al., 2005b). However, species also differ in the number and
location of thoracic horns (e.g. thoracic horns can develop from the
front, middle or sides of the pronotum), and future studies should
examine whether these differences contribute to the variation in
the size and scaling relationships of head horns among species. For
example, if multiple thoracic horns constrain the development of
wings and other neighbouring body parts (Emlen, 2001; Kawano,
1995; Nijhout & Emlen, 1998), then species that must fly long
distances for food or mates may be selected to invest less in
thoracic horns (Emlen, 2001), and concomitantly may invest less in
head horns.

Finally, we note that this study only examined variation in horn
length, even though species also vary dramatically in horn shape.
Interspecific differences in horn morphology are likely to reflect
structural adaptations to species-specific fighting styles
(McCullough et al., 2014), but little is known about how horn
morphology varies within species across the range of body size, and
whether these changes also reflect structural adaptations to meet
the mechanical demands of fighting. We recently found that, in the
Asian rhinoceros beetle Trypoxylus dichotomus, the second moment
of area of horns (ameasure of cross-sectional shape) increased with
horn length in a way that preserved the horns' performance as a
stiff and strong weapon (McCullough, Ledger, & Moore, 2015).
However, these relationships may differ among species depending
on the style and intensity of fights (Kitchener, 1985, 1991;
McCullough, 2014; McCullough et al., 2015). Studies that compare
the fighting behaviours and performance of horns within and
among species will be important for understanding the variation in
scaling relationships of rhinoceros beetle horns and other animal
weapons.
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