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Abstract
Structures used in intrasexual competition span a continuum, with pure weapons that are 
used exclusively in physical fights at one extreme and pure aggressive signals that are 
used exclusively to assess and threaten rivals at the other. We propose this weapon-signal 
continuum offers a framework for understanding the variation in allometric slopes among 
intra-sexually selected structures. We predict allometric slopes will become steeper as the 
relative importance of signaling increases, because aggressive signaling will favor the 
evolution of hypervariable structures that facilitate the assessment of subtle differences in 
body size. We provide preliminary empirical support for the continuum hypothesis using 
species with different types of armaments and offer suggestions for how to test the weapon-
signal continuum among closely related species.

Keywords Allometry · Armament · Male-male competition · Scaling · Sexual selection · 
Weapon

Introduction

Morphological diversity largely reflects variation in size (Huxley 1932; Thompson 1942; 
Gould 1966). Across species, individual body sizes, and/or developmental stages, large organ-
isms are not simply magnified versions of small ones because they differ in the relative growth 
of body parts. This shape variation is especially apparent among secondary sexual structures 
because ornaments and armaments often scale disproportionately with body size. Specifically, 
the slope of the log–log regression of trait size against body size among conspecific adults is 
often greater than 1, indicating positive static allometry (Gould 1973; Alatalo et al. 1988; Sim-
mons and Tomkins 1996; Kawano 1997; Baker and Wilkinson 2001; McCullough et al. 2015; 
O’Brien et al. 2018). Many ornaments and armaments also scale disproportionately with body 
size when traits are measured in the same individual across different developmental stages 
(e.g., Miller 1973) and among individuals from different species (e.g., Gould 1974), indicating 
positive ontogenetic and evolutionary allometry, respectively. Our study focuses specifically 
on variation in static allometry, which describes proportional trait sizes among individuals 
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from the same population and at the same developmental stage (Cheverud 1982; Klingenberg 
and Zimmermann 1992). Henceforth, we refer to static allometry as simply allometry.

A sufficiently large number of secondary sexual structures exhibit positive allometry that 
authors have concluded this pattern is “almost universal” (Kodric-Brown et al. 2006). Oth-
ers have similarly argued that positive allometry can be used as a diagnostic test to evaluate 
whether a structure has been the target of sexual selection (Green 2000; Kelly 2005; Knell and 
Fortey 2005; O’Brien et al. 2018; Graham et al. 2020). But positive allometry is not a ubiq-
uitous attribute of secondary sexual structures. Comprehensive surveys across a broad range 
of taxa find that ornaments and armaments can have allometric slopes less than 1 (Bonduri-
ansky 2007; Voje 2016), and behavioral experiments find directional sexual selection does not 
always result in the evolution of positive allometry (Pomfret and Knell 2006; van Lieshout and 
Elgar 2009). Allometric slopes also exhibit a considerable degree of variation within closely 
related species, with slopes (calculated here using ordinary least squares regression on log-
transformed data) ranging from 0.83 to 2.69 in stalk-eyed flies (Voje and Hansen 2013) and 
0.52–3.50 in earwigs (Simmons and Tomkins 1996). So much variation begs an explanation.

The “functional allometry” hypothesis was recently proposed to help explain why the 
scaling relationships of secondary sexual structures are so variable (Eberhard et  al. 2018; 
Rodríguez and Eberhard 2019). This hypothesis recognizes that secondary sexual structures 
are used in different ways and suggests the scaling relationship of a structure depends on its 
specific function. Aggressive signals are expected to have the steepest allometries; courtship 
signals are expected to have shallower allometries; and contact courtship traits are expected 
to have the shallowest allometries. The functional allometry hypothesis provides a valuable 
framework for understanding much of the observed variation among secondary sexual struc-
tures. However, the authors of the functional allometry hypothesis did not rank the expected 
allometry of sexually selected weapons because such predictions are complicated by the fact 
that weapons are often also used as aggressive signals, and their mechanical functions vary 
widely among species (Eberhard et al. 2018; Rodríguez and Eberhard 2019). The functional 
allometry hypothesis also cannot explain the variation in allometric slopes among aggressive 
signals (or weapons), which belong to the same functional category. The current paper aims to 
resolve some of this unexplained variation.

Here, we expand on the functional allometry hypothesis to make explicit predictions 
about the allometric slopes of sexually selected weapons and the variation observed among 
intra-sexually selected structures. We have previously proposed that weapons and aggres-
sive signals should be considered as a continuum, rather than as discrete functional catego-
ries (McCullough et  al. 2016). We propose that integrating this weapon-signal continuum 
hypothesis with allometric studies offers a comparative framework for studying the variation 
in allometry among species. Specifically, we suggest that the scaling relationship of structures 
used in intrasexual competition will be correlated with the relative importance of fighting ver-
sus signaling, allowing researchers to predict trait function based on allometric patterns (or 
vice versa).

The weapon‑signal continuum

Intrasexual competition (typically among males) is likely the most widespread form of 
sexual selection (Shuker 2014) and has driven the evolution of a diverse array of mor-
phologies that improve an individual’s chance of winning fights (Emlen 2008; Rico-
Guevara and Hurme 2019). The structures used in male-male competition are often 
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collectively called weapons, but many are not physically engaged during fights. We pre-
viously proposed that structures used in male-male competition should be considered 
as part of a continuum (Fig. 1), with pure weapons that are only used in direct physical 
fights at one extreme and pure aggressive signals that are only used in displays to assess 
and threaten rivals at the other (McCullough et  al. 2016). Although we did not make 
specific recommendations about terminology in our previous paper, we now suggest the 
use of “armament” as an inclusive term to refer to structures across the entire contin-
uum. By recognizing the various ways in which armaments are used during intrasexual 
interactions, the weapon-signal continuum may help explain why only some armaments 
evolve to extreme sizes, and why only a subset scale disproportionately with body size.

The steep scaling relationships characteristic of aggressive signals are the result 
of selection for conspicuous, highly variable structures that advertise an individual’s 
fighting ability or resource holding potential. Males of all sizes benefit from exchang-
ing aggressive signals prior to combat because it allows them to quickly and relia-
bly assess the resource holding potential of their opponent (Parker 1974; Arnott and 
Elwood 2009; Hardy and Briffa 2013). Competitively superior individuals avoid 
wasting time and energy on fights they would easily win, and competitively weaker 
individuals avoid being injured in fights they would certainly lose. Intrasexual com-
petition has therefore favored the evolution of effective and reliable signals that allow 

Fig. 1  Weapon-signal continuum ranging from pure weapons (left) to pure aggressive signals (right). Allo-
metric slopes become steeper as the relative importance of signaling increases, based on comparisons of 
three armaments that span the weapon-signal continuum: hindlegs of bulb mites, claws of fiddler crabs, 
and eye-spans of stalk-eyed flies. In comparison to their reference traits, bulb mite legs (pure weapon) had 
the shallowest allometric slope, fiddler crab claws (dual weapon-signal) had an intermediate allometric 
slope, and stalk-eyed fly eye-spans (pure signal) had the steepest allometric slope. Allometric slopes (esti-
mate ± SE) of focal traits (βfocal, plotted in black) and reference traits (βref, plotted in gray) are from ordinary 
least squares regression on  log10-transformed length measurements. Figure adapted from McCullough et al. 
(2016). Photo credits: Jan Van Arkel (bulb mite), Daisuke Muramatsu (fiddler crab), and Jerry Wilkinson 
(stalk-eyed fly)
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individuals to evaluate their opponents and make informed decisions on whether they 
should fight or retreat.

Structures that make effective and reliable aggressive signals are typically both 
conspicuous and hypervariable (Searcy and Nowicki 2005; Hardy and Briffa 2013). 
Conspicuous structures stand out by being relatively larger than other body parts. 
Because conspicuous structures are easily detected, they facilitate the rapid assessment 
of opponents during the early stages of a contest (Tazzyman et al. 2014). Hypervari-
able structures scale disproportionately with body size, so the structure is dispropor-
tionately large in large individuals and disproportionately small in small individuals. 
Because hypervariable structures amplify differences in body size, they are favored in 
the context of intrasexual competition by allowing males to discern otherwise subtle 
differences in body size and make more precise comparisons of competitive ability 
(Panhuis and Wilkinson 1999; Emlen 2008; O’Brien et al. 2018). Hypervariability is 
especially important for large individuals because differences between stimuli are more 
difficult to detect as the magnitude of the stimuli increases, according to Weber’s Law 
of perception (Akre and Johnsen 2014). Larger individuals therefore need proportion-
ally larger aggressive signals to successfully intimidate closely size-matched rivals.

While conspicuousness and hypervariability contribute to the efficacy of aggres-
sive signals, exaggerated and highly variable structures will only be useful for pre-fight 
assessment if there is also a positive correlation between resource holding potential 
and body size (O’Brien et al. 2018). Resource holding potential is almost always asso-
ciated with body size, either directly because body size is a major factor in determining 
contest outcome (Preston et al. 2003; Pratt et al. 2003; Reaney et al. 2011; McCullough 
and Simmons 2016), or indirectly because body size is tightly correlated with ener-
getic status or other physiological predictors of fighting success (Briffa 2008). In these 
species, individuals benefit from assessing differences in body size before engaging in 
a contest, which favors the evolution of aggressive signals that amplify these differ-
ences through patterns of steep allometry (O’Brien et al. 2018).

In contrast to aggressive signals, we predict pure weapons to exhibit shallow allo-
metries. In species with pure weapons, individuals do not assess the size or resource 
holding potential of their competitors before deciding to engage in a fight, so there is 
no selective advantage of having a structure that magnifies differences in body size 
(Rodríguez and Eberhard 2019). In fact, hypervariability is expected to be disfavored 
in the case of pure weapons because exaggerated size often limits a weapon’s per-
formance capability (Dennenmoser and Christy 2013). Once a weapon gains an addi-
tional function as an aggressive signal, however, individuals will benefit from having 
a more conspicuous and variable structure that is more effective in assessing and/or 
threatening rivals. This selective advantage will drive the evolution of steeper allo-
metries. We therefore predict that the scaling relationships between armament and 
body size will vary in steepness along the length of the weapon-signal continuum, with 
slopes becoming steeper as the signaling function and importance of rival assessment 
increases. Pure weapons may also exhibit shallow allometries if males benefit from 
having a structure that connects well with the most common sizes of potential oppo-
nents, similar to the “one size fits all” explanation for genitalia and other contact court-
ship traits (Eberhard et al. 2018; Rodríguez and Eberhard 2019). Shallow allometries 
may therefore be a general characteristic of contact structures, regardless of whether 
they are used in the context of fighting or courtship.
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Testing the weapon‑signal hypothesis

Using different types of armaments

As a preliminary test of the weapon-signal hypothesis, we compared the allometries of 
three structures that spanned the weapon-signal continuum (Fig. 1): the modified hindlegs 
of bulb mites (Acaridae), the elongated eye-spans of stalk-eyed flies (Diopsidae), and the 
enlarged claws of fiddler crabs (Ocypodidae). We chose these three species because they 
could be confidently ranked along the weapon-signal continuum (see below). With just 
three species, we recognize that our analysis is just a first step in exploring the correlation 
between allometric slope and armament function but hope our ideas promote further study.

We hypothesize that the modified hindlegs in the aggressive “fighter” morph of bulb 
mites are an example of a pure weapon. Fighter males are characterized by having a thick-
ened and sharply clawed third pair of legs that are used to puncture and kill other males 
(Radwan 1993, 2001; Radwan et al. 2000; Stewart et al. 2018). This strategy of lethal fight-
ing is adaptive, particularly in small populations, because a single fighter male may be able 
to eliminate all of its rivals and gain exclusive reproductive access to females (Radwan 
1993). Visual signaling, such as threat displays, is unlikely to be important because bulb 
mites are typically subterranean and therefore fight in the dark (Stewart et al. 2018).

On the other end of the continuum, the elongated eye-spans of stalk-eyed flies may 
represent an example of a pure signal. In sexually dimorphic diopsids, males compete for 
and defend access to female aggregations on exposed rootlets, and males with longer eye-
spans are more successful at monopolizing these mating sites (Burkhardt and de la Motte 
1987; Panhuis and Wilkinson 1999). Contests begin when two males orient face-to-face 
and approach with parallel eye-spans. If neither male retreats, males may perform threat 
displays by rising on their hindlegs and spreading their forelegs parallel to their eyestalks, 
potentially to emphasize the length of their eye-spans (Burkhardt and de la Motte 1987; 
Panhuis and Wilkinson 1999). If the contest remains unresolved, males may escalate fur-
ther to intense fighting and use their forelegs to jab, hook, and upend their opponents (Pan-
huis and Wilkinson 1999). Eye-spans therefore should not be considered weapons because 
even in the most intense fights, the eye-spans are not brought into direct contact during 
fights (Eberhard et al. 2018). Instead, eye-spans appear to be used exclusively as visual sig-
nals to assess the overall size of opponents.

Most structures used in male-male competition are likely to have a dual function 
because they are used as both weapons and aggressive signals. For example, male fiddler 
crabs have an enlarged “major” claw that is used as a weapon in fights over ownership 
of breeding burrows (Hyatt and Salmon 1978; Jennions and Backwell 1996; Pratt et  al. 
2003) and also as a signal in waving displays to attract females and repel intruders (Back-
well and Passmore 1996; Backwell et al. 1999; Pope 2000; Muramatsu 2011). The major 
claw can comprise nearly half the total body mass (Crane 1975) and is a fully functional 
weapon that can deliver a powerful pinch during fights (Levinton and Judge 1993; Dennen-
moser and Christy 2013). Fiddler crabs are also visually oriented animals (Zeil and Hemmi 
2006) that may spend 50% of their above-ground time performing waving displays (Hyatt 
1977) and an additional 2% of their daily time budget cleaning their claws to keep them 
as bright as possible (Tina et al. 2016; McCullough et al. 2020). Fiddler crab claws there-
fore belong in the middle of the weapon-signal continuum, although the specific location 
may differ among species depending on the relative importance of fighting versus signal-
ing (McCullough et al. 2016). Thus, the weapon-signal continuum offers a framework for 
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understanding variation in allometries both among very different types of armaments and 
for the same type of armament among closely related species.

We note that in our original manuscript on the weapon-signal continuum, we suggested 
that rhinoceros beetle horns and stag beetle mandibles were examples of pure weapons 
because they are used as tools to lift and lever rivals during fights but probably have little 
to no role in visual signaling (McCullough et al. 2016). We now realize that these arma-
ments may play an important role in tactile and/or chemical signaling in some species 
(McCullough and Zinna 2013; Goyens et al. 2015), so they are probably better classified as 
a dual weapon-signal. Because the signaling function of armaments may occur in multiple 
sensory modalities, including modes that are difficult to detect for human observers, we 
propose that the prevalence of lethal fighting may be a better metric for ranking structures 
along the weapon-signal continuum.

Following the methods outlined by O’Brien et al. (2018), we compared the allometric 
slopes of focal (sexually selected) structures to those of reference (non-sexually selected) 
structures. Although allometric studies typically test for positive allometry by evaluating 
whether a slope is significantly greater than 1, we advocate for studies that take a more 
holistic approach and evaluate whether a focal trait scales more (or less) steeply than other 
body parts (O’Brien et al. 2018). By including reference traits as an internal control, this 
approach offers a more biologically relevant assessment of how sexually selected structures 
scale with body size. Because the analyses by O’Brien et al. (2018) focused specifically on 
“extreme” structures and the “positive allometry hypothesis”, our study extends their work 
by exploring why some weapons are relatively small, why intra-sexually selected structures 
exhibit a range of allometric slopes, and how such variation in allometry can provide clues 
about trait function.

We estimated the allometric slopes of focal (βfocal) and reference (βreference) traits using 
ordinary least squares regression on  log10-transformed length measurements. A summary 
of the estimated slopes, intercepts, and 95% confidence intervals is reported in Table 1. To 
facilitate slope comparisons between species, we also calculated the difference in allomet-
ric slopes between the focal and reference trait (Δβ). For plotting purposes only, we mean 
centered the focal and reference traits by subtracting the individual trait values by the focal 
or reference trait means.

We compared the allometric slopes of bulb mite legs, stalk-eyed fly eye-spans, and fid-
dler crab claws using data from Pike et al. (2017), Swallow et al. (2005), and Muramatsu 
and Koga (2016) respectively. We chose these three datasets because they comprise large 

Table 1  Summary of allometric data on focal and reference traits

Estimates of allometric slope and intercept are based on ordinary least squares regression on log-trans-
formed data (N = sample size; Δβ = slope of focal trait—slope of reference trait)

Species Trait N Intercept ± SE Slope ± SE Slope 95% CI Δβ

Bulb mites Male third leg width (focal) 332 1.40 ± 0.12 0.26 ± 0.06 [0.14, 0.38] − 0.17
Female third leg width (refer-

ence)
181 0.82 ± 0.15 0.43 ± 0.08 [0.28, 0.58]

Fiddler crabs Major claw length (focal) 104 − 0.56 ± 0.04 1.66 ± 0.04 [1.58, 1.73] 0.61
Minor claw length (reference) 104 − 0.44 ± 0.04 1.04 ± 0.03 [0.98, 1.11]

Stalk-eyed flies Male eyespan (focal) 135 − 0.67 ± 0.03 1.93 ± 0.04 [1.85, 2.00] 0.74
Female eyespan (reference) 108 − 0.20 ± 0.03 1.19 ± 0.03 [1.12, 1.25]
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sample sizes (n > 100) and include measurements for both the focal trait and a reference 
trait. For bulb mites (Rhizoglyphus echinopus), third leg width of fighter males was the 
focal trait, third leg width of females was the reference trait, and anterior coxae suture 
length was used as a standard measure of body size (Pike et al. 2017). For stalk-eyed flies 
(Teleopsis dalmanni, formerly Cyrtodiopsis dalmanni), male eye-span length was the focal 
trait, female eye-span length was the reference trait, and body length was the measure of 
body size. Due to potential allometric variation among populations (Swallow et al. 2005), 
only individuals from the Langat population (largest sample size) were used in the analy-
ses. For fiddler crabs (Uca lactea), major claw length was the focal trait, minor claw length 
was the reference trait, and carapace width was the measure of body size. Males with 
regenerated or broken claws were excluded from the analyses.

We note that for bulb mites and stalk-eyed flies, we used the homologous traits in 
females as the non-sexual (control) reference traits. This approach obviously is not appli-
cable in systems where the secondary sexual structure is only present in males (e.g., horns 
in most rhinoceros beetles) and would not be appropriate in systems where the homolo-
gous trait in females has a female-specific function (e.g., competition for foraging sites, as 
in reindeer; Melnycky et al. 2013). We recognize that choosing an appropriate reference 
trait is likely to be challenging in most species and will require detailed knowledge about 
trait function. Ideally, focal and reference traits would be measured in the same individual. 
According to the recommendations by O’Brien et al. (2018), reference traits should be a 
distinct body part that is not functionally related to the focal structure and that scales pro-
portionally with body size. Unfortunately, we are not aware of any datasets for pure weap-
ons or pure signals that include “ideal” reference traits.

In support of the weapon-signal hypothesis, we found that the pure weapon had the shal-
lowest allometric slope, the dual weapon-signal had an intermediate slope, and the pure 
signal had the steepest slope (Fig. 1). Thus, the allometric slopes of armaments become 
steeper as signaling becomes relatively more important (McCullough et al. 2016).

Using similar types of armaments

A more robust test of the weapon-signal continuum hypothesis would compare the allo-
metric slopes of the same type of armament among closely related species. The continuum 
predicts the slopes will be steeper in species where signaling is relatively more important 
and shallower in species where fighting is relatively more important. Unfortunately, we are 
not aware of any comparative datasets that include measurements of both a focal trait and 
reference trait and where behavioral data is detailed enough to rank species according to 
the relative importance of fighting versus signaling.

One metric that could be used to rank species along the weapon-signal continuum is the 
percentage of fights that end in the death or serious injury of one opponent. Species that 
always engage in lethal fighting belong at the weapon end of the continuum. For example, 
in several species of Hymenoptera, there is a flightless, large-headed “aggressive” male 
morph that uses its enlarged mandibles to compete for females inside enclosed spaces, 
such as fig receptacles or subterranean nests (Hamilton 1979; Murray 1987; Danforth 
1991; Bean and Cook 2001). In Macrotera portalis (formerly Perdita portalis), male-male 
fights always end in the death of one opponent, so the surviving male monopolizes a large 
number of females inside the nest and mates repeatedly with them just prior to oviposi-
tion (Danforth 1991). In support of the weapon-signal hypothesis, the allometric slope for 
mandibles is 72% shallower in the aggressive fighter morph than in the non-aggressive 
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scrambler morph, and their mandibles are also significantly less variable (Danforth 1991). 
Species that rarely fight to the death, on the other hand, belong closer to the signal end of 
the continuum. For example, only 6% of rutting red deer males are permanently injured 
each year (Clutton-Brock et  al. 1979), and deer antlers exhibit strong positive allometry 
(Vanpé et  al. 2007; Melnycky et  al. 2013). Fatal fights are typically rare among species 
with the most exaggerated armaments because their effectiveness in threat displays makes 
it possible for males to resolve contests through assessment before escalating to a danger-
ous fight (Emlen 2008, 2014).

While we currently lack comparative data to compare the weapon-signal continuum 
among closely related species, there are several taxa that are promising candidates for 
future work. For example, earwig species differ in how they use their cerci during male-
male interactions (Briceño and Eberhard 1995), and the allometric slopes of cerci range 
from significantly negative to strongly positive (Simmons and Tomkins 1996). In broad 
support of the continuum hypothesis, van Lieshout and Elgar (2009) found that cerci in 
Euborellia brunneri are important in resolving male-male fights, are not important in 
displays towards females, and exhibit a negative allometric slope. Although the authors 
argued that the negative slope was “unusual” for a sexually selected structure, we suggest 
the pattern is consistent with predictions from the weapon-signal continuum. If cerci are 
not favored in the context of displays towards males or females, these structures would be 
classified as a pure weapon and should exhibit a shallow allometric slope.

Primate canines are another system that may be informative for testing the weapon-sig-
nal continuum. Canines are used as both weapons in physical fights and signals in threat 
displays, and the importance of signaling should depend on a species’ social system (Plav-
can and van Schaik 1992). Threat displays are predicted to be particularly important in spe-
cies with large social groups and fluctuating male group membership because most males 
will be strangers and therefore must rely on status signals to resolve agonistic interactions 
(Bergman and Sheehan 2013). Consistent with these predictions, male mandrills (Mandril-
lus sphinx) are itinerant and travel in hordes with over 600 individuals (Abernethy et al. 
2002) and have canines that are positively allometric (Klopp 2012) as well as bright facial 
coloration that may enhance canine displays (Setchell and Wickings 2005). Threat displays 
are predicted to be less advantageous in species that live in small social groups because 
there will be a much higher degree of familiarity between individuals, so aggressive sig-
nals alone will be less effective in resolving conflicts and deterring the escalation of fights 
(Bergman and Sheehan 2013). Intermale competition is likely to be frequent and intense, 
which may favor selection on canines as pure weapons (Plavcan and van Schaik 1992). 
Whether species with small social groups fit these predictions by having canines with shal-
lower allometric slopes remains to be tested.

Considerations

We highlight several factors researchers must consider when testing and interpreting the 
weapon-signal continuum:

First, comparisons along the weapon-signal continuum will be most straightforward for 
armaments with linear allometries where the scaling relationship between armament and body 
size can be described with a single allometric slope. The continuum may be less informa-
tive for understanding variation in scaling relationships among armaments with curvilinear, 
sigmoidal, or other non-linear allometries (Knell 2009), including species with male dimor-
phism (e.g., Danforth 1991; Radwan 1993; Emlen 1997) or where depletion of developmental 
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resources limits armament size in the largest individuals (e.g., Knell et al. 2004; McCullough 
et al. 2015; see also Lemaître et al. 2014; Tidière et al. 2017). Even in these cases, however, it 
is possible to compare the allometric slopes among a subset of individuals, for example among 
just “major” males (as we did for bulb mites).

Second, aggressive signals are only expected to exhibit steep scaling relationships if 
resource holding potential is positively correlated with body size. In species where body size 
is not a reliable predictor of fight outcome (e.g., Sneddon et al. 2000; Lappin and Husak 2005; 
Yoshino et al. 2011), individuals will not gain information about their competitor’s fighting 
ability by assessing differences in body size, so intrasexual competition is not expected to favor 
the evolution of hypervariable armaments with steep allometries. Thus, even pure aggressive 
signals may exhibit relatively shallow allometries if the likelihood of winning fights does not 
depend on body size.

Third, variation in the biomechanics of fighting will affect the allometric slopes of pure 
weapons. In species where weapons are used to pinch or squeeze opponents (e.g., fiddler crab 
claws), individuals may not benefit from increases in weapon size because larger weapons 
(longer levers) have lower mechanical advantages and produce weaker closing forces (Levin-
ton and Allen 2005). Pure pinching and squeezing weapons are therefore expected to exhibit 
relatively shallow allometries. In species where weapons are used to lift or strike opponents, 
on the other hand, selection may favor continued increases weapon size if larger weapons con-
fer a competitive advantage due to larger strike zones or faster speeds (Maldonado et al. 1967; 
Loxton and Nicholls 1979; Levinton and Allen 2005). Species may also be able to compensate 
for mechanical constraints on weapon size by investing heavily in surrounding muscle tissue 
(Goyens et al. 2014; O’Brien and Boisseau 2018; O’Brien 2019), which may allow the evolu-
tion of larger weapons and steeper allometries than otherwise expected. While pure weap-
ons are generally expected to have shallower slopes than aggressive signals, they may still 
exhibit a range of allometries depending on the species-specific biomechanics of how fighting 
forces are produced and delivered. We encourage future studies that compare the allometries 
of armaments with different biomechanical functions.

Lastly, structures that function as both armaments and ornaments might also exhibit a range 
of allometric slopes. Many armaments are used both as threat signals to deter potential rivals 
and as courtship signals to attract potential mates (Berglund et al. 1996). Courtship signaling 
may strengthen selection for steep allometries if females benefit from choosing males based on 
armament size by selecting higher quality mates (Berglund et al. 1996). Alternatively, court-
ship signaling may oppose selection on steep allometries if females do not prefer exaggerated 
ornaments (Wilkinson and Reillo 1994), or if exaggerated ornaments hamper a male’s ability 
to perform courtship displays (Byers et al. 2010). The relative importance of signaling towards 
males versus females may thus contribute to variation in allometric slopes.

We believe the weapon-signal hypothesis provides a valuable framework for studying 
variation in allometry, but further work is needed to understand its applicability across all 
armaments.

Conclusion

Despite decades of research on the scaling relationships of sexually selected structures, 
there is still debate over why their allometries are so variable (Bonduriansky 2007; 
Voje 2016; Eberhard et  al. 2018). The weapon-signal continuum offers a framework for 
understanding the diversity of allometric slopes among structures used in intrasexual 
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competition. It predicts that as the relative importance of signaling increases (and the rela-
tive importance of physical fighting decreases), selection will favor hypervariable struc-
tures that amplify differences in body size, and thus will drive the evolution of steep 
allometries. Variation in allometric slopes may therefore provide important clues about 
armament function. More generally, the weapon-signal continuum highlights that struc-
tures used in intrasexual competition should not be lumped into a single category because 
weapons are different from signals. To fully understand the evolution of sexually selected 
traits, we must recognize their diverse and distinct functions.
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