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We investigate the instabilities of a flat elastic ribbon subject to twist under tension, and develop
an integrated phase diagram of the observed shapes and transitions. We find that the primary
buckling mode switches from being localized longitudinal along the length of the ribbon to transverse
above a triple point characterized by a crossover tension which scales with ribbon elasticity and
aspect ratio. Far from threshold, the longitudinally buckled ribbon evolves continuously into a self-
creased helicoid with focusing of curvature along triangular edges. Further twist causes an anomalous
transition to loops compared with rods due to the self-rigidity induced by the creases. When the
ribbon is twisted under high tension, transverse wrinkles are observed due to the development of
compressive stresses with higher harmonics for greater width to length ratios. Our results can be
used to develop functional structures using a wide range of elastic materials and length scales.
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Finding smart, reliable, and efficient strategies toward
developing functional shapes at smaller and smaller scales
has been a focus of intense research in elastic materials
ranging from synthetic yarns to atomically thin graphene
sheets and soft tissue ﬂ—@] Although buckling, wrin-
kling, and creasing of thin sheets under compressive load-
ing has been widely studied recently ﬂﬂ ], the insta-
bilities and shapes observed under the application of a
twist have received far less attention. Seminal analy-
sis by Green m], confirmed later by numerical simula-
tions |11, @], showed that a ribbon under tension is un-
stable upon twist due to the development of a spatially
nonuniform compressive stress. Under finite tensile load,
transverse buckling and localized loop formation has been
shown using numerical simulations M] In the case
where the ribbon is inextensible, stress localization can
occur ﬂﬁ] However, no previous studies, either theo-
retical or experimental, provide a comprehensive view of
these observations.

Here, we show that the various ribbon shapes are or-
ganized in a phase diagram using only two control pa-
rameters: the initial tension and the twist angle. In this
phase diagram, the lines separating regimes — where heli-
coids, buckled helicoids, and loops are observed — meet at
a triple point which sets the value of a characteristic ten-
sion 7. The primary buckling mode switches from lon-
gitudinal to transverse when crossing 7. Below T, we
characterize a secondary instability leading to a loop, and
show that the development of creases affects this transi-
tion dramatically. We find that the transitions studied
here are different in nature and more diverse than the
ones observed with rods ﬂﬂ] We provide the first clear
experimental observation of the various buckling modes
and further develop an integrated understanding of their
onset using simple scaling arguments. Our results for
the onset of longitudinal buckling compare well to those
reported using more elaborate asymptotic analysis ﬂﬁ],
and our approach allows us to further characterize the

onset of the transverse buckling and the characteristic
tension 1.

We study a ribbon of length L, width W, and thickness
h which is held under tension F' using clamped bound-
ary conditions at its ends, and then twisted through a
prescribed angle o about its central long axis. Other
types of boundary conditions may be considered but they
are more difficult to implement experimentally. Rib-
bons composed of biaxially-oriented polyethylene tereph-
thalate with Young’s modulus E = 3.4GPa HE] and
L > 10W > 500h are used, unless otherwise stated. The

)%

normalized twist angle 6 = o~ and the non-dimensional

tension 71" = % are used as control parameters to de-
scribe the applied conditions as illustrated in Fig. [[I(a).
Examples of a helicoid, buckled helicoids in the longitu-
dinal and transverse direction, a creased helicoid, and a
localized loop obtained by simply varying 7" and 6 are
shown in Fig. [i(b)-(f), respectively.

Phase diagram - T* We obtained the phase diagram
by measuring the critical angle for the longitudinal buck-
ling, the loop transition, and the transverse buckling for
a ribbon by increasing 6 in small increments from zero
for an initial tension 7' (see Fig. [lg)). Note that the
local deformations are within a good approximation in
the linear elastic regime of the material, while plastic
deformations are observed only near the edge of the rib-
bon for high twist angle (§ > 0.5) [18]. Interestingly,
we find that the three lines, corresponding to the on-
set of the three instabilities mentioned above, meet at
a triple point characterized by the crossover tension 7.
Longitudinal buckling occurs below T and the critical
angle 0p, increases with T'. Above 0p, the postbuckling
shape evolves progressively into a creased helicoid with
folds of alternating angles. Upon further twist, a sec-
ondary instability occurs at a critical angle 61 where the
ribbon shape transforms into a loop with self-contact.
The nature of this transition depends on T'. Below T*,
the ribbon switches dynamically into a loop configura-
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FIG. 1. (a) A schematic of the ribbon illustrating the applied tension and twist at the boundaries. Images of a helicoid (b),
a longitudinally buckled helicoid (c), a transversely buckled helicoid (d), a creased helicoid (e), and a ribbon with a localized
loop (f). The images all correspond to a uniform green biaxially-oriented polyethylene terephthalate ribbon (W =12.7 mm and
h =76 um.) (g) The phase diagram of the shapes observed along with the critical twist angle for the longitudinal buckling (6r,
o), the transverse buckling (67, v) as a function of the tension (L =45cm, W = 25.4mm, and h = 127 yum.) Below a crossover
tension T, the buckling is longitudinal. A secondary discontinuous buckling transition leading to a loop with self-contact is
observed (w) upon further twist. A transverse buckled mode is observed for T'> T*. Upon further twisting, a loop with self

contact develops (o).

tion with 67 decreasing linearly with 7'. Above T, the
buckling is now transverse with a critical angle, also de-
noted by 6r, independent of T' over the range of tension
explored. Further twisting can lead to loops with self-
contact. More complicated self-wrapped configurations
can occur for other ribbon aspect ratios and are not dis-
cussed here in the interest of space. Also, it may be noted
that changing the boundary conditions affects the phase
diagram but investigating this is beyond the scope of the
present study as we are primarily interested in clamped
edges.

Buckling and postbuckling - Below T™ In order to ob-
tain quantitative information on the shape of the rib-
bon, we use a Varian Medical Systems micro-focus X-ray
Computer Tomography instrument which allows ribbons
with lengths up to 15cm to be fully scanned to resolu-
tions within tens of microns. The mean curvature H and
the Gaussian curvature K are then obtained to charac-
terize the shapes. Figure 2(a)-(c) shows the map of the
curvature superimposed on the ribbon before and after
buckling. A helicoid shape can be expected if a con-
stant twisting rate along the ribbon is assumed which is
confirmed by a zero mean curvature (Fig. 2a)). When
0 = 61, the ribbon buckles longitudinally (Fig. (b)) with
a pattern essentially localized in the central portion of
the ribbon, which on further twist can develop creases

where the curvature is further localized along the sides
of a triangle (Fig. 2l(c)).

To understand this mode of buckling, we consider the
non-dimensional longitudinal stress of a thin filament at a
distance y from the central axis given by o, + %92 (y/W)z,
where o, is the stress of the central line. Then, o, is set
by the condition of constant load (o) = T = oy, + 0%/24,
where (..) stands for the average along the transverse
direction. Introducing 6y = /24T,

1
51 (1)

Plotting 6, in Fig. 2(d), we note that buckling occurs
consistently above 6y when compressive stress develops
longitudinally. Just above 6y, the width of the com-
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Now, to develop the criteria for longitudinal buckling
as a result of the compressive stresses, we use energy
arguments by considering only the central part of the
ribbon where quadratic dependence of the longitudinal
stress with y/W can be neglected. Let us consider a
buckled mode characterized by a typical amplitude A and
wavelength A\. Then, the change in the elastic energy
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FIG. 2. (a)-(b) Ribbon shapes before and after longitudinal
buckling. (c) Creasing regime at higher twist. The mean cur-
vature is measured from 3D X-ray scans of the ribbon and
superimposed on the extracted shape according to the color
map shown. (d) 61 as a function of 7. All critical angle lie
above 0 = /24T (dashed line) which corresponds to the theo-
retical critical twist angle for ribbons of vanishing thicknesses.
(e) O, — 0o as a function of T'. The symbol corresponds to the
mean and the vertical bar to the standard deviation. For rib-
bons with finite thicknesses, 61 is offset by 9.3h/W. Same
symbols as in (d). (f) The longitudinal buckling wavelength

Az normalized by VhW decreases with T' in good agreement
with Eq.

density due to longitudinal buckling is the sum of three

contributions:
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Where, the first term corresponds to the compressive en-
ergy stored in the ribbon, and the second and third terms
arise because of the energy penalty due to bending in the
longitudinal and transverse direction, respectively. The
ribbon is unstable when the energy gain by releasing the
longitudinal compression overcomes the cost of bending.
Then, by inspection of Eq.[2 the change in stability oc-
curs for a critical twist angle § = 61, and longitudinal
wavelength A = A\r, when

L h (AL (We)?
T (W) [(W) +()\L) ]
The wavelength selected is associated with the most
unstable buckling mode characterized by the condition
o, /OX = 0 which leads to A;, ~ W, and the critical longi-
tudinal stress o, ~ (h/W.)?. Because we do not measure

or, we find it more convenient to obtain an expression
for f1,. Then, as can be seen from Fig.2(d), 6, is similar

(3)

to 0y, we can use the linearized expressions for o7, and
We. Solving for 6, we obtain :

h
O b0 ~ . (4)

and

AL ~/BW [0,. (5)

The expressions for Ay and 6y hold as long as 6y >
(h/W) which insures that A < W and the buckling is
confined in the central part of the ribbon. By plotting
the data where A\ < W, we find that 7 — 6y increases
linearly with h/W (Fig. Ble)) consistently with Eq. [El
The corresponding measured Ay, is observed to decrease
as a function of T" as shown in Fig. Plf) consistent with
Eq. Bl with a numerical prefactor of 3.8. Further, the ex-
perimentally obtained prefactors for 8y, — 6y and A\j, are
consistent with those seen numerically ﬂﬁ]

Keeping the tension below T < T*, and twisting the
ribbon far above the threshold for longitudinal buckling,
the pattern breaks the right-left symmetry by progres-
sively localizing the mean curvature along lines of alter-
nating angle until self-creased helicoidal structure forms
as shown in Fig. 2(c). The sharpness of the creases is
more pronounced at lower tension. This creased he-
licoidal pattern, which is well known in origami, was
demonstrated previously for inextensible ribbons HE],
but no satisfactory explanation for the pattern selec-
tion is available. We find the size of the triangle is not
unique and is given by the wavelength at onset as shown
in Fig. (b) and (c) suggesting that our stability anal-
ysis is actually a selection mechanism for the observed
pattern. Further, we find that the creasing helicoid can
be observed in a regime of higher tension (6p > h/W)
than previously thought. The condition of inextensiblil-
ity, usually required to form localized stressed regions in
thin elastic plate, may be locally met within the central
compressed region of the ribbon.

Transverse buckling - Above T Transverse buckling is
observed above T with buckling patterns that depends
mainly on geometrical parameters. When L > W, only
the fundamental mode is observed (Fig. [Bl(a)) which has
been seen numerically ﬂﬂ, ] Further twisting leads to
a localized loop with a unique self-contact (Fig. Og)).
However, higher modes can be obtained by decreasing
h/W and L/W as shown in Fig. B(b)-(c)) where trans-
verse cross-sections of ribbons (x = 0) twisted above 01
can be seen. Further twisting leads to shapes with a
complex set of self-contacts. We measure the critical
angle for various combinations of geometrical parame-
ters L/W and h/W for T > T* and only consider crit-
ical twist angle 07 > 27/(L/W') where the fundamental
buckling mode is observed. Figure Bld) shows 61 versus
L/W, and where each symbol corresponds to a differ-
ent length. In Fig. Ble), we plot 7 as a function of
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FIG. 3. (a)-(c) Measured transverse cross-section of ribbons
(z = 0) twisted above Or illustrating different buckling har-
monics depending on h/W and L/W (E ~ 1MPa). (d) Evo-
lution of the critical angle 7 for the transverse buckling with
the aspect ratio L/W of the ribbons. A given symbol cor-
responds to a fixed length and thickness and varying width.
Four different lengths in the range 10 — 90cm are investigated
with thicknesses h = 7T6um (¥ ), 254pm (¢) and 127um (m,
v, »). A dashed line drawn as a guide for the eyes separates
the ribbon regime (large L/W) with a plate regime (small
L/W). (e) Evolution of 7 with h/W in the ribbon regime.
All the data (same symbols as in (d)) collapse on a single

curve O = 4.4(h/W)"? independent to L as further shown in
the corresponding log-log plot in the inset.

h/W and find that all the data collapse onto a single
line 67 = 4.4(h/W)'2. This trend can be explained by a
stability analysis of a thin transverse section of the rib-
bon under compression. A compressive transverse stress
scaling as o ~ E#* has been argued using scaling argu-
ments [1]. The section buckles when o ~ E(h/W)2,
which corresponds to the buckling condition for a beam
of length W and thickness h. This condition leads to a
critical angle 61 ~ \/h/W that only depends on a geo-
metrical parameter unlike 07, and is consistent with our
experimental data (see Fig. Ble)). Plastic deformations
can be observed near the edges for # > 0.5 and will have to
be taken into account in subsequent analysis for a more
precise prediction, although the scaling is expected not
to change.

Secondary instability - Below T* We next discuss the
anomalous secondary transition to the loop in more de-
tail (see Fig. d). While increasing 6 above 61 (solid blue
line), the ribbon dynamically jumps to a loop configura-
tion with self-contact. When 6 is then decreased below
01, the loop remains stable demonstrating the hysteretic
nature of the transverse buckling below 7. Upon further
decrease, the ribbon is no longer in self-contact below the
dashed red line, and the helicoid is recovered below the
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FIG. 4. (a) Evolution of the critical angle 67 for the trans-
verse buckling with tension (w,v,v, solid lines) using a rib-
bon with W = 25.4mm, h = 127pum and L = 45cm. Twist
angles where self-contact is first observed while increasing 6
(o, blue dashed line), and where self-contact is no longer ob-
served while decreasing 0 (e, red dashed line). Above T, the
transverse buckling (v) and the formation of a self-contact
(o) are successive and no significant hysteresis is observed.
Below T, when increasing 6, a loop with a self-contact is
formed and Or decreases linearly with 7' (w). When decreas-
ing 6 in the striped area, the loss of self-contact (e) and the
transition to a creased helicoid (w) are successive. (b) Mean
curvature H of ribbon with loop (W = 15mm, L = 10cm
and h = 127um). (c¢) Gaussian curvature K of the same rib-
bon. Above the transition, the Gaussian curvature vanishes
whereas the mean curvature is localized in the loop region.

solid red line. This transformation from a shape with
a negative Gaussian curvature (helicoid) to a cylindrical
shape (loop) is a way for a ribbon to release part of its
in-plane stress. But, surprisingly, the critical angle de-
creases linearly with the tension. This feature is in sharp
contrast with the higher T' regime. It means that a loop
is formed more easily at higher tension unlike rods where
the tension is reduced to trigger the loop transition @]
The self-rigidity that arises from the formation of creases
at low tension may well play an important role in this
anomalous loop transition. It is well known that shells
with large curvature have a great resistance against de-
formation @] However, in the case of a ribbon, the
rigidity mechanism is spontaneous because no intrinsic
curvature was present in the pre-stressed flat ribbon.

Scaling for T* Now, by using the condition 0y, = 0,
we can obtain a scaling for the crossover tension 7. Sub-
stituting the expressions for the critical angle for both
buckling modes in the thin ribbon limit (h/W — 0), we
obtain T* ~ 0.8h/W. For the ribbon used in Fig. [g),
our scaling analysis gives T* ~ 4x1073, in good agreement
with our experimental data.

Fundamental questions on the onset of buckling, wrin-
kling and crumpling of thin elastic materials and post-
buckling behavior is still a matter of significant de-
bate ﬂﬁ] Because rarely has a single experiment em-
braced such a diversity of shapes and behaviors without



the need for a complex coupling with a substrate ﬂﬂ, @],
or frictional walls m, @], the twisted ribbon configu-
ration offers a new paradigm to understand the strong
nonlinear and singular elastic theory as captured by the
Foppl-von Karméan equations.
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